1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
//! Real-time compute-focused async executor with job pools, thread-local data, and priorities.
//!
//! # Example
//!
//! ```rust
//! use switchyard::Switchyard;
//! use switchyard::threads::{thread_info, single_pool_one_to_one};
//! // Create a new switchyard with one job pool and empty thread local data
//! let yard = Switchyard::new(1, single_pool_one_to_one(thread_info(), Some("thread-name")), ||()).unwrap();
//!
//! // Spawn a task on pool 0 and priority 10 and get a JoinHandle
//! let handle = yard.spawn(0, 10, async move { 5 + 5 });
//! // Spawn a lower priority task on the same pool
//! let handle2 = yard.spawn(0, 0, async move { 2 + 2 });
//!
//! // Wait on the results
//! # futures_executor::block_on(async {
//! assert_eq!(handle.await + handle2.await, 14);
//! # });
//! ```
//!
//! # How Switchyard is Different
//!
//! Switchyard is different from other existing async executors, focusing on situations where
//! precise control of threads and execution order is needed. One such situation is using
//! task parallelism to parallelize a compute workload.
//!
//! ## Priorites
//!
//! Each task has a priority and tasks are ran in order from high priority to low priority.
//!
//! ```rust
//! # use switchyard::{Switchyard, threads::{thread_info, single_pool_one_to_one}};
//! # let yard = Switchyard::new(1, single_pool_one_to_one(thread_info(), Some("thread-name")), ||()).unwrap();
//! // Spawn task with lowest priority.
//! yard.spawn(0, 0, async move { /* ... */ });
//! // Spawn task with higher priority. If both tasks are waiting, this one will run first.
//! yard.spawn(0, 10, async move { /* ... */ });
//! ```
//!
//! ## Job Pools
//!
//! Inside each yard there can be multiple (up to [`MAX_POOLS`]) different "job pools". Each thread in
//! the pool is dedicated to a single pool. By having multiple pools, it can help prevent executor
//! exhaustion.
//!
//! ```rust
//! # use switchyard::{Switchyard, threads::thread_info};
//! # use switchyard::threads::double_pool_two_to_one;
//! // Create a yard with two job pools. Each logical core gets two threads, one per pool.
//! let yard = Switchyard::new(2, double_pool_two_to_one(thread_info(), Some("thread-name")), ||()).unwrap();
//!
//! // Spawn task on pool 0.
//! yard.spawn(0, 0, async move { /* ... */ });
//! // Spawn task on pool 1.
//! yard.spawn(1, 0, async move { /* ... */ });
//! ```
//!
//! ## Thread Local Data
//!
//! Each yard has some thread local data that can be accessed using [`spawn_local`](Switchyard::spawn_local).
//! Both the thread local data and the future generated by the async function passed to [`spawn_local`](Switchyard::spawn_local)
//! may be `!Send` and `!Sync`. The future will only be resumed on the thread that created it.
//!
//! If the data is `Send`, then you can call [`access_per_thread_data`](Switchyard::access_per_thread_data) to get
//! a vector of mutable references to all thread's data. See it's documentation for more information.
//!
//! ```rust
//! # use switchyard::{Switchyard, threads::{thread_info, single_pool_one_to_one}};
//! # use std::cell::Cell;
//! // Create yard with thread local data. The data is !Sync.
//! let yard = Switchyard::new(1, single_pool_one_to_one(thread_info(), Some("thread-name")), || Cell::new(42)).unwrap();
//!
//! // Spawn task that uses thread local data. Each running thread will get their own copy.
//! yard.spawn_local(0, 0, |data| async move { data.set(10) });
//! ```
//!
//! # MSRV
//! 1.51
//!
//! Future MSRV bumps will be breaking changes.

#![deny(future_incompatible)]
#![deny(nonstandard_style)]
#![deny(rust_2018_idioms)]

use crate::{
    task::{Job, Task, ThreadLocalJob, ThreadLocalTask},
    threads::ThreadAllocationOutput,
    util::ThreadLocalPointer,
};
use arrayvec::ArrayVec;
use futures_intrusive::{
    channel::shared::{oneshot_channel, ChannelReceiveFuture, OneshotReceiver},
    sync::ManualResetEvent,
};
use futures_task::{Context, Poll};
use parking_lot::{Condvar, Mutex, RawMutex};
use priority_queue::PriorityQueue;
use slotmap::{DefaultKey, DenseSlotMap};
use std::{
    any::Any,
    future::Future,
    panic::{catch_unwind, AssertUnwindSafe, UnwindSafe},
    pin::Pin,
    sync::{
        atomic::{AtomicBool, AtomicUsize, Ordering},
        Arc,
    },
};

pub mod affinity;
mod error;
mod task;
pub mod threads;
mod util;
mod worker;

pub use error::*;

/// Maximum job pools an executor has.
///
/// This is a constant because it allows inline storage of queues.
pub const MAX_POOLS: PoolCount = 8;

/// Integer alias for a priority.
pub type Priority = u32;
/// Integer alias for a pool index.
pub type Pool = u8;
/// Integer alias for the maximum amount of pools.
pub type PoolCount = u8;

/// Handle to a currently running task.
///
/// Awaiting this future will give the return value of the task.
pub struct JoinHandle<T: 'static> {
    _receiver: OneshotReceiver<Result<T, Box<dyn Any + Send + 'static>>>,
    receiver_future: ChannelReceiveFuture<RawMutex, Result<T, Box<dyn Any + Send + 'static>>>,
}
impl<T: 'static> Future for JoinHandle<T> {
    type Output = T;

    fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
        let fut = unsafe { Pin::new_unchecked(&mut self.get_unchecked_mut().receiver_future) };
        let poll_res = fut.poll(ctx);

        match poll_res {
            Poll::Ready(None) => {
                // If this returns ready with none, that means the channel was closed
                // due to the waker dying. We can just return pending  as this future will never
                // return.
                Poll::Pending
            }
            Poll::Ready(Some(value)) => Poll::Ready(value.unwrap_or_else(|_| panic!("Job panicked!"))),
            Poll::Pending => Poll::Pending,
        }
    }
}

/// Vendored from futures-util as holy hell that's a large lib.
struct CatchUnwind<Fut>(Fut);

impl<Fut> CatchUnwind<Fut>
where
    Fut: Future + UnwindSafe,
{
    fn new(future: Fut) -> CatchUnwind<Fut> {
        CatchUnwind(future)
    }
}

impl<Fut> Future for CatchUnwind<Fut>
where
    Fut: Future + UnwindSafe,
{
    type Output = Result<Fut::Output, Box<dyn Any + Send>>;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let f = unsafe { Pin::new_unchecked(&mut self.get_unchecked_mut().0) };
        catch_unwind(AssertUnwindSafe(|| f.poll(cx)))?.map(Ok)
    }
}

struct ThreadLocalQueue<TD> {
    waiting: Mutex<DenseSlotMap<DefaultKey, Arc<ThreadLocalTask<TD>>>>,
    inner: Mutex<PriorityQueue<ThreadLocalJob<TD>, u32>>,
}
struct FlaggedCondvar {
    running: AtomicBool,
    inner: Condvar,
}
struct Queue<TD> {
    waiting: Mutex<DenseSlotMap<DefaultKey, Arc<Task<TD>>>>,
    inner: Mutex<PriorityQueue<Job<TD>, u32>>,
    condvars: Vec<FlaggedCondvar>,
}
impl<TD> Queue<TD> {
    /// Must be called with `queue.inner`'s lock held.
    fn notify_one(&self) {
        for var in &self.condvars {
            if !var.running.load(Ordering::Relaxed) {
                var.inner.notify_one();
                return;
            }
        }
    }

    /// Must be called with `queue.inner`'s lock held.
    fn notify_all(&self) {
        // We could be more efficient and not notify everyone, but this is more surefire
        // and this function is only called on shutdown.
        for var in &self.condvars {
            var.inner.notify_all();
        }
    }
}
type Queues<TD> = ArrayVec<Queue<TD>, { MAX_POOLS as usize }>;

struct Shared<TD> {
    active_threads: AtomicUsize,
    idle_wait: ManualResetEvent,
    job_count: AtomicUsize,
    death_signal: AtomicBool,
    queues: Queues<TD>,
}

/// Compute focused async executor.
///
/// See crate documentation for more details.
pub struct Switchyard<TD: 'static> {
    shared: Arc<Shared<TD>>,
    threads: Vec<std::thread::JoinHandle<()>>,
    thread_local_data: Vec<*mut Arc<TD>>,
}
impl<TD: 'static> Switchyard<TD> {
    /// Create a new switchyard.
    ///
    /// Will create `pool_count` job pools.
    ///
    /// For each element in the provided `thread_allocations` iterator, the yard will spawn a worker
    /// thread with the given settings. Helper functions in [`threads`] can generate these iterators
    /// for common situations.
    ///
    /// `thread_local_data_creation` will be called on each thread to create the thread local
    /// data accessible by `spawn_local`.
    pub fn new<TDFunc>(
        pool_count: Pool,
        thread_allocations: impl IntoIterator<Item = ThreadAllocationOutput>,
        thread_local_data_creation: TDFunc,
    ) -> Result<Self, SwitchyardCreationError>
    where
        TDFunc: Fn() -> TD + Send + Sync + 'static,
    {
        if pool_count >= MAX_POOLS {
            return Err(SwitchyardCreationError::TooManyPools {
                pools_requested: pool_count,
            });
        }

        let (thread_local_sender, thread_local_receiver) = std::sync::mpsc::channel();

        let thread_local_data_creation_arc = Arc::new(thread_local_data_creation);
        let allocation_vec: Vec<_> = thread_allocations.into_iter().collect();

        let num_logical_cpus = num_cpus::get();
        for (idx, allocation) in allocation_vec.iter().enumerate() {
            if allocation.pool >= pool_count {
                return Err(SwitchyardCreationError::InvalidPoolIndex {
                    thread_idx: idx,
                    pool_idx: allocation.pool,
                    total_pools: pool_count,
                });
            }
            if let Some(affin) = allocation.affinity {
                if affin >= num_logical_cpus {
                    return Err(SwitchyardCreationError::InvalidAffinity {
                        affinity: affin,
                        total_threads: num_logical_cpus,
                    });
                }
            }
        }

        let mut shared = Arc::new(Shared {
            queues: (0..pool_count)
                .map(|_| Queue {
                    waiting: Mutex::new(DenseSlotMap::new()),
                    inner: Mutex::new(PriorityQueue::new()),
                    condvars: Vec::new(),
                })
                .collect::<Queues<TD>>(),
            active_threads: AtomicUsize::new(allocation_vec.len()),
            idle_wait: ManualResetEvent::new(false),
            job_count: AtomicUsize::new(0),
            death_signal: AtomicBool::new(false),
        });

        let shared_guard = Arc::get_mut(&mut shared).unwrap();

        let queue_local_indices: Vec<_> = allocation_vec
            .iter()
            .map(|thread_info| {
                let condvar_array = &mut shared_guard.queues[thread_info.pool as usize].condvars;

                let queue_local_index = condvar_array.len();
                condvar_array.push(FlaggedCondvar {
                    inner: Condvar::new(),
                    running: AtomicBool::new(true),
                });

                queue_local_index
            })
            .collect();

        let mut threads = Vec::with_capacity(allocation_vec.len());
        for (mut thread_info, queue_local_index) in allocation_vec.into_iter().zip(queue_local_indices) {
            let builder = std::thread::Builder::new();
            let builder = if let Some(name) = thread_info.name.take() {
                builder.name(name)
            } else {
                builder
            };
            let builder = if let Some(stack_size) = thread_info.stack_size.take() {
                builder.stack_size(stack_size)
            } else {
                builder
            };

            threads.push(
                builder
                    .spawn(worker::body::<TD, TDFunc>(
                        Arc::clone(&shared),
                        thread_info,
                        queue_local_index,
                        thread_local_sender.clone(),
                        thread_local_data_creation_arc.clone(),
                    ))
                    .unwrap_or_else(|_| panic!("Could not spawn thread")),
            );
        }
        // drop the sender we own, so we can retrieve pointers until all senders are dropped
        drop(thread_local_sender);

        let mut thread_local_data = Vec::with_capacity(threads.len());
        while let Ok(ThreadLocalPointer(ptr)) = thread_local_receiver.recv() {
            thread_local_data.push(ptr);
        }

        Ok(Self {
            threads,
            shared,
            thread_local_data,
        })
    }

    /// Things that must be done every time a task is spawned
    fn spawn_header(&self, pool: Pool) {
        assert!(
            !self.shared.death_signal.load(Ordering::Acquire),
            "finish() has been called on this Switchyard. No more jobs may be added."
        );
        assert!(
            (pool as usize) < self.shared.queues.len(),
            "pool {} refers to a non-existant pool. Total pools: {}",
            pool,
            self.shared.queues.len()
        );

        // SAFETY: we must grab and increment this counter so `access_per_thread_data` knows
        // we're in flight.
        self.shared.job_count.fetch_add(1, Ordering::AcqRel);

        // Say we're no longer idle so that `yard.spawn(); yard.wait_for_idle()`
        // won't "return early". If the thread hasn't woken up fully yet by the
        // time wait_for_idle is called, it will immediately return even though logically there's
        // still an outstanding, active, job.
        self.shared.idle_wait.reset();
    }

    /// Spawn a future which can migrate between threads during execution to the given job `pool` at
    /// the given `priority`.
    ///
    /// A higher `priority` will cause the task to be run sooner.
    ///
    /// # Example
    ///
    /// ```rust
    /// use switchyard::{Switchyard, threads::single_pool_single_thread};
    ///
    /// // Create a yard with a single pool
    /// let yard: Switchyard<()> = Switchyard::new(1, single_pool_single_thread(None, None), || ()).unwrap();
    ///
    /// // Spawn a task on pool 0 and with priority 0 and get a handle to the result.
    /// let handle = yard.spawn(0, 0, async move { 2 * 2 });
    ///
    /// // Await result
    /// # futures_executor::block_on(async move {
    /// assert_eq!(handle.await, 4);
    /// # });
    /// ```
    ///
    /// # Panics
    ///
    /// - `pool` refers to a non-existent job pool.
    /// - [`finish`](Switchyard::finish) has been called on the pool.
    pub fn spawn<Fut, T>(&self, pool: Pool, priority: Priority, fut: Fut) -> JoinHandle<T>
    where
        Fut: Future<Output = T> + Send + 'static,
        T: Send + 'static,
    {
        self.spawn_header(pool);

        let (sender, receiver) = oneshot_channel();
        let job = Job::Future(Task::new(
            Arc::clone(&self.shared),
            async move {
                // We don't care about the result, if this fails, that just means the join handle
                // has been dropped.
                let _ = sender.send(CatchUnwind::new(std::panic::AssertUnwindSafe(fut)).await);
            },
            pool,
            priority,
        ));

        let queue: &Queue<TD> = &self.shared.queues[pool as usize];

        let mut queue_guard = queue.inner.lock();
        queue_guard.push(job, priority);
        // the required guard is held in `queue_guard`
        queue.notify_one();
        drop(queue_guard);

        JoinHandle {
            receiver_future: receiver.receive(),
            _receiver: receiver,
        }
    }

    /// Spawns an async function which is tied to a single thread during execution.
    ///
    /// Spawns to the given job `pool` at the given `priority`.
    ///
    /// The given async function will be provided an `Arc` to the thread-local data to create its future with.
    ///
    /// A higher `priority` will cause the task to be run sooner.
    ///
    /// The function must be `Send`, but the future returned by that function may be `!Send`.
    ///
    /// # Example
    ///
    /// ```rust
    /// use std::{cell::Cell, sync::Arc};
    /// use switchyard::{Switchyard, threads::single_pool_single_thread};
    ///
    /// // Create a yard with thread local data.
    /// let yard: Switchyard<Cell<u64>> = Switchyard::new(
    ///     1,
    ///     single_pool_single_thread(None, None),
    ///     || Cell::new(42)
    /// ).unwrap();
    /// # let mut yard = yard;
    ///
    /// // Spawn an async function using the data.
    /// yard.spawn_local(0, 0, |data: Arc<Cell<u64>>| async move {data.set(12);});
    /// # futures_executor::block_on(yard.wait_for_idle());
    /// # assert_eq!(yard.access_per_thread_data(), Some(vec![&mut Cell::new(12)]));
    ///
    /// async fn some_async(data: Arc<Cell<u64>>) -> u64 {
    ///     data.set(15);
    ///     2 * 2
    /// }
    ///
    /// // Works with normal async functions too
    /// let handle = yard.spawn_local(0, 0, some_async);
    /// # futures_executor::block_on(yard.wait_for_idle());
    /// # assert_eq!(yard.access_per_thread_data(), Some(vec![&mut Cell::new(15)]));
    /// # futures_executor::block_on(async move {
    /// assert_eq!(handle.await, 4);
    /// # });
    /// ```
    ///
    /// # Panics
    ///
    /// - Panics is `pool` refers to a non-existent job pool.
    pub fn spawn_local<Func, Fut, T>(&self, pool: Pool, priority: Priority, async_fn: Func) -> JoinHandle<T>
    where
        Func: FnOnce(Arc<TD>) -> Fut + Send + 'static,
        Fut: Future<Output = T>,
        T: Send + 'static,
    {
        self.spawn_header(pool);

        let (sender, receiver) = oneshot_channel();
        let job = Job::Local(Box::new(move |td| {
            Box::pin(async move {
                // We don't care about the result, if this fails, that just means the join handle
                // has been dropped.
                let unwind_async_fn = AssertUnwindSafe(async_fn);
                let unwind_td = AssertUnwindSafe(td);
                let future = catch_unwind(move || AssertUnwindSafe(unwind_async_fn.0(unwind_td.0)));

                let ret = match future {
                    Ok(fut) => CatchUnwind::new(AssertUnwindSafe(fut)).await,
                    Err(panic) => Err(panic),
                };

                let _ = sender.send(ret);
            })
        }));

        let queue: &Queue<TD> = &self.shared.queues[pool as usize];

        let mut queue_guard = queue.inner.lock();
        queue_guard.push(job, priority);
        // the required guard is held in `queue_guard`
        queue.notify_one();
        drop(queue_guard);

        JoinHandle {
            receiver_future: receiver.receive(),
            _receiver: receiver,
        }
    }

    /// Wait until all working threads are starved of work due
    /// to lack of jobs or all jobs waiting.
    ///
    /// # Safety
    ///
    /// - This function provides no safety guarantees.
    /// - Jobs may be added while the future returns.
    /// - Jobs may be woken while the future returns.
    pub async fn wait_for_idle(&self) {
        // We don't reset it, threads will reset it when they become active again
        self.shared.idle_wait.wait().await;
    }

    /// Current amount of jobs in flight.
    ///
    /// # Safety
    ///
    /// - This function provides no safety guarantees.
    /// - Jobs may be added after the value is received and before it is returned.
    pub fn jobs(&self) -> usize {
        self.shared.job_count.load(Ordering::Relaxed)
    }

    /// Count of threads currently processing jobs.
    ///
    /// # Safety
    ///
    /// - This function provides no safety guarantees.
    /// - Jobs may be added after the value is received and before it is returned re-activating threads.
    pub fn active_threads(&self) -> usize {
        self.shared.active_threads.load(Ordering::Relaxed)
    }

    /// Access the per-thread data of each thread. Only available if `TD` is `Send`.
    ///
    /// This function requires `&mut self` in order to be sound. If you have the yard in a global,
    /// you need to wrap it with `RwLock` so you can get a `&mut` from a `&`.
    ///
    /// Two conditions need to be true for this to return `Some`. First all threads must be idle
    /// (i.e. `wait_for_idle`'s future would immediately return). Second no references to any thread's
    /// local data may be alive.
    ///
    /// # Example
    ///
    /// ```rust
    /// use std::{cell::Cell, sync::Arc};
    /// use switchyard::{Switchyard, threads::single_pool_single_thread};
    ///
    /// // Create a yard with thread local data.
    /// let mut yard: Switchyard<Cell<u64>> = Switchyard::new(
    ///     1,
    ///     single_pool_single_thread(None, None),
    ///     || Cell::new(42)
    /// ).unwrap();
    ///
    /// // Wait for all threads to get themselves situated.
    /// # futures_executor::block_on(async {
    /// yard.wait_for_idle().await;
    /// # });
    ///
    /// // View that thread-local data. The yard has one thread, so returns a vec of length one.
    /// assert_eq!(yard.access_per_thread_data(), Some(vec![&mut Cell::new(42)]));
    ///
    /// // Launch a task to change that data
    /// let handle = yard.spawn_local(0, 0, |data| async move { data.set(525_600); });
    ///
    /// // If the task isn't finished yet, this will return None.
    /// yard.access_per_thread_data();
    ///
    /// // Wait for task to be done
    /// # futures_executor::block_on(async {
    /// assert_eq!(handle.await, ());
    /// # });
    ///
    /// // We also need to wait for all threads to come to a stopping place
    /// # futures_executor::block_on(async {
    /// yard.wait_for_idle().await;
    /// # });
    ///
    /// // Observe changed value
    /// assert_eq!(yard.access_per_thread_data(), Some(vec![&mut Cell::new(525_600)]));
    /// ```
    ///
    /// # Safety
    ///
    /// - This function guarantees that there exist no other references to this data if `Some` is returned.
    /// - This function guarantees that `jobs()` is 0 and will stay zero while the returned references are still live.  
    pub fn access_per_thread_data(&mut self) -> Option<Vec<&mut TD>>
    where
        TD: Send,
    {
        let threads_live = self.shared.active_threads.load(Ordering::Acquire);

        // SAFETY: No more jobs can be added and threads woken because we have an exclusive reference to the yard.
        if threads_live != 0 {
            return None;
        }

        // SAFETY:
        //  - We know there are no threads running because `count` is zero and we have an exclusive reference to the yard.
        //  - Threads do not keep references to their `Arc`'s around while idle, nor hand them to tasks.
        //  - `TD` is allowed to be `!Sync` because we never actually touch a `&TD`, only `&mut TD`.
        let arcs: Vec<&mut Arc<TD>> = self.thread_local_data.iter().map(|&ptr| unsafe { &mut *ptr }).collect();

        let data: Option<Vec<&mut TD>> = arcs.into_iter().map(|arc| Arc::get_mut(arc)).collect();

        data
    }

    /// Kill all threads as soon as they finish their jobs. All calls to spawn and spawn_local will
    /// panic after this function is called.
    ///
    /// This is equivalent to calling drop. Calling this function twice will be a no-op
    /// the second time.
    pub fn finish(&mut self) {
        // send death signal then wake everyone up
        self.shared.death_signal.store(true, Ordering::Release);
        for queue in &self.shared.queues {
            let lock = queue.inner.lock();
            queue.notify_all();
            drop(lock);
        }

        self.thread_local_data.clear();
        for thread in self.threads.drain(..) {
            thread.join().unwrap();
        }
    }
}

impl<TD: 'static> Drop for Switchyard<TD> {
    fn drop(&mut self) {
        self.finish()
    }
}

unsafe impl<TD> Send for Switchyard<TD> {}
unsafe impl<TD> Sync for Switchyard<TD> {}