1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
#![forbid(missing_docs)]
#![doc(html_root_url = "https://docs.rs/swimmer/0.2.0")]

//! A thread-safe object pool for Rust.
//!
//! An object pool is used to reuse
//! objects without reallocating them.
//!  When an object is requested from
//! a pool, it is taken out of the pool; once
//! it is dropped, it is returned to the pool
//! and can be retrieved once more.
//!
//! The main type of this crate is the [`Pool`](struct.Pool.html)
//! struct, which implements a thread-safe object pool.
//! It can pool objects which implement [`Recyclable`](struct.Recyclable.html),
//! a trait which allows the pool to initialize and "recycle"
//! an object.
//!
//! The implementation of this is as follows:
//! * A pool is created using the [`builder`](fn.builder.html)
//! function. It is configured with an initial size.
//! * Upon creation of the pool, the pool initializes
//! `initial_size` values using `Recyclable`'s `new` function.
//! * When a value is requested from the pool, usually
//! using `Pool::get()`, a value is taken out of the internal
//! buffer. If there are no remaining values, a new object
//! is initialized using `Recyclable::new()`.
//! * The value can then be used by the caller.
//! * When the value is dropped, it is returned to the pool,
//! and future calls to `Pool::get()` may return the same object.
//!
//! To ensure that the object is cleaned, the pool calls `Recyclable::recycle()`
//! on the object before returning it to the pool. This function removes
//! any mutated state of the object, effectively "resetting" it. For
//! example, see the following sequence of events:
//! * A pool of vectors is initialized.
//! * A vector is retrieved from the pool, and some values are added to it.
//! * The vector is dropped and returned to the pool.
//!
//! Without resetting the vector, future calls to `Pool::get` could return
//! a vector containing those old elements; clearly, this is not desirable.
//! As a result, the `Recyclable` implementation for `Vec` clears the
//! vector when recycling.
//!
//! This crate is heavily based on the `lifeguard` crate, but
//! it is thread-safe, while `lifeguard` is not.
//!
//! # Thread safety
//! `Pool` is thread-safe, and it can be shared across threads
//! or used in a lazily-initialized static variable (see the examples).
//!
//! This is currently implemented by making the pool contain
//! a thread-local buffer for each thread, which has been proving
//! by benchmarks to be more than twice as performant as using
//! a locked `Vec` or `crossbeam::SegQueue`.
//!
//! # Supplier
//! In some cases, you may want to specify your own function
//! for initializing new objects rather than use the default
//! `Recyclable::new()` function. In this case, you can optionally
//! use `PoolBuilder::with_supplier()`, which will cause
//! the pool to use the provided closure to initialize
//! new values.
//!
//! For example, the `Recyclable` implementation for `Vec<T>`
//! allocates a vector with zero capacity, but you may want
//! to give the vector an initial capacity. In that case,
//! you can do this, for example:
//! ```
//! use swimmer::Pool;
//! let pool: Pool<Vec<u32>> = swimmer::builder()
//!     .with_supplier(|| Vec::with_capacity(128))
//!     .build();
//!
//! let vec = pool.get();
//! assert_eq!(vec.capacity(), 128);
//! ```
//!
//! Note, however, that the supplier function is only
//! called when the object is first initialized: it is
//! not used to recycle the object. This means that there
//! is currently no way to implement custom recycling
//! functionality.
//!
//! # Crate features
//! * `hashbrown-impls`: implements `Recyclable` for `hashbrown::HashMap` and
//! `hashbrown::HashSet`.
//! * `smallvec-impls`: implements `Recyclable` for `SmallVec`.
//!
//! # Examples
//! Basic usage:
//! ```
//! use swimmer::Pool;
//!
//! // Initialize a new pool, allocating
//! // 10 empty values to start
//! let pool: Pool<String> = swimmer::builder()
//!     .with_starting_size(10)
//!     .build();
//!
//! assert_eq!(pool.size(), 10);
//!
//! let mut string = pool.get();
//! assert_eq!(*string, ""); // Note that you need to dereference the string, since it is stored in a special smart pointer
//! string.push_str("test"); // Mutate the string
//!
//! // One object was taken from the pool,
//! // so its size is now 9
//! assert_eq!(pool.size(), 9);
//!
//! // Now, the string is returned to the pool
//! drop(string);
//!
//! assert_eq!(pool.size(), 10);
//!
//! // Get another string from the pool. This string
//! // could be the same one retrieved above, but
//! // since the string is cleared before returning
//! // into the pool, it is now empty. However, it
//! // retains any capacity which was allocated,
//! // which prevents additional allocations
//! // from occurring.
//! let another_string = pool.get();
//! assert_eq!(*another_string, "");
//! ```
//!
//! Implementing `Recyclable` on your own object:
//! ```
//! use swimmer::{Pool, Recyclable};
//!
//! struct Person {
//!     name: String,
//!     age: u32,
//! }
//!
//! impl Recyclable for Person {
//!     fn new() -> Self {
//!         Self {
//!             name: String::new(),
//!             age: 0,
//!         }
//!     }
//!
//!     fn recycle(&mut self) {
//!         // You are responsible for ensuring
//!         // that modified `Person`s get reset
//!         // before being returned to the pool.
//!         // Otherwise, the object could be put
//!         // back into the pool with its old state
//!         // still intact; this could cause weird behavior!
//!         self.name.clear();
//!         self.age = 0;
//!      }
//! }
//!
//! let pool: Pool<Person> = Pool::new();
//! let mut josh = pool.get();
//! josh.name.push_str("Josh"); // Since `recycle` empties the string, this will effectively set `name` to `Josh`
//! josh.age = 47;
//!
//! drop(josh); // Josh is returned to the pool and his name and age are reset
//!
//! // Now get a new person
//! let another_person = pool.get();
//! ```
//! Using a `Pool` object in a `lazy_static` variable,
//! allowing it to be used globally:
//! ```
//! use lazy_static::lazy_static;
//! use swimmer::Pool;
//!
//! lazy_static! {
//!     static ref POOL: Pool<String> = {
//!         Pool::new()
//!     };
//! }
//!
//! let value = POOL.get();
//! ```

mod builder;
#[allow(clippy::implicit_hasher)] // No way to initialize a hash map with generic hasher
mod recyclable;

pub use builder::{builder, PoolBuilder, Supplier};
pub use recyclable::Recyclable;

use std::cell::RefCell;
use std::cmp::Ordering;
use std::fmt::{self, Debug, Display, Formatter};
use std::mem::ManuallyDrop;
use std::mem::MaybeUninit;
use std::ops::{Deref, DerefMut};
use thread_local::CachedThreadLocal;

/// A thread-safe object pool, used
/// to reuse objects without reallocating.
///
/// See the crate-level documentation for more information.
#[derive(Default)]
pub struct Pool<T>
where
    T: Recyclable,
{
    settings: PoolBuilder<T>,
    values: CachedThreadLocal<RefCell<Vec<T>>>,
}

impl<T> Pool<T>
where
    T: Recyclable,
{
    /// Creates a new pool with default settings.
    ///
    /// This is equivalent to `swimmer::builder().build()`.
    ///
    /// # Examples
    /// ```
    /// use swimmer::Pool;
    /// let pool: Pool<String> = Pool::new();
    /// // Use the pool...
    /// ```
    pub fn new() -> Pool<T> {
        builder().build()
    }

    /// Creates a new pool with the specified
    /// starting size. The pool will allocate
    /// `size` initial values and insert them into
    /// the pool.
    ///
    /// This is equivalent to `swimmer::builder().with_size(size).build()`.
    ///
    /// # Examples
    /// ```
    /// use swimmer::Pool;
    /// let pool: Pool<Vec<String>> = Pool::with_size(16);
    /// assert_eq!(pool.size(), 16);
    /// ```
    pub fn with_size(size: usize) -> Pool<T> {
        builder().with_starting_size(size).build()
    }

    /// Retrieves a value from the pool.
    ///
    /// The value
    /// is returned using a `Recycled` smart pointer
    /// which returns the object to the pool when dropped.
    ///
    /// # Examples
    /// ```
    /// use swimmer::Pool;
    /// let pool: Pool<String> = Pool::new();
    ///
    /// let string = pool.get();
    /// assert_eq!(*string, "");
    /// ```
    pub fn get(&self) -> Recycled<T> {
        let value = self.get_raw_value();

        Recycled {
            value: ManuallyDrop::new(value),
            pool: self,
        }
    }

    /// Returns the current size of the pool.
    ///
    /// When an object is removed from the pool,
    /// the size is decremented; when it is returned, the
    /// size is incremented.
    ///
    /// # Examples
    /// ```
    /// use swimmer::Pool;
    /// let pool: Pool<String> = Pool::with_size(16);
    ///
    /// assert_eq!(pool.size(), 16);
    ///
    /// let _string = pool.get();
    /// assert_eq!(pool.size(), 15);
    ///
    /// drop(_string);
    /// assert_eq!(pool.size(), 16);
    /// ```
    pub fn size(&self) -> usize {
        self.values.get_or(|| init()).borrow().len()
    }

    /// Attaches `value` to this pool, wrapping
    /// it in a smart pointer which will return the
    /// object into the pool when dropped.
    ///
    /// # Examples
    /// ```
    /// use swimmer::Pool;
    /// let pool: Pool<u64> = Pool::with_size(0);
    /// assert_eq!(pool.size(), 0);
    ///
    /// let ten = pool.attach(10);
    /// // `ten` is still borrowed from the pool,
    /// // so the size hasn't changed
    /// assert_eq!(pool.size(), 0);
    ///
    /// // When dropped, `ten` will be returned
    /// // back to the pool
    /// drop(ten);
    /// assert_eq!(pool.size(), 1);
    /// ```
    pub fn attach(&self, value: T) -> Recycled<T> {
        Recycled {
            value: ManuallyDrop::new(value),
            pool: self,
        }
    }

    /// Detatches a value from this pool.
    ///
    /// This is equivalent to `get`, except
    /// for that the object will **not** be returned
    /// to the pool when dropped—it will simply be dropped.
    ///
    /// # Examples
    /// ```
    /// use swimmer::Pool;
    /// let pool: Pool<String> = Pool::with_size(10);
    ///
    /// let detached_string = pool.detached();
    /// assert_eq!(pool.size(), 9);
    ///
    /// // When dropped, the string won't
    /// // be returned to the pool
    /// drop(detached_string);
    /// assert_eq!(pool.size(), 9);
    /// ```
    pub fn detached(&self) -> T {
        self.get_raw_value()
    }

    fn create(&self) -> T {
        if let Some(supplier) = self.settings.supplier.as_ref() {
            supplier()
        } else {
            T::new()
        }
    }

    fn return_value(&self, mut value: T) {
        value.recycle();
        self.values.get_or(|| init()).borrow_mut().push(value);
    }

    fn get_raw_value(&self) -> T {
        self.values
            .get_or(|| init())
            .borrow_mut()
            .pop()
            .unwrap_or_else(|| self.create())
    }
}

fn init<T>() -> Box<RefCell<Vec<T>>> {
    Box::new(RefCell::new(vec![]))
}

/// A smart pointer which returns the contained
/// object to its pool once dropped.
///
/// Objects of this type are obtained using `Pool::get`.
pub struct Recycled<'a, T>
where
    T: Recyclable,
{
    value: ManuallyDrop<T>,
    pool: &'a Pool<T>,
}

impl<'a, T> Drop for Recycled<'a, T>
where
    T: Recyclable,
{
    fn drop(&mut self) {
        // Return value to pool.

        let value = unsafe {
            // Safe because the value is wrapped in ManuallyDrop,
            // so the uninitialized memory won't be read from.
            std::mem::replace(&mut self.value, MaybeUninit::uninit().assume_init())
        };
        let value = ManuallyDrop::into_inner(value);

        self.pool.return_value(value);
    }
}

impl<'a, T> AsRef<T> for Recycled<'a, T>
where
    T: Recyclable,
{
    fn as_ref(&self) -> &T {
        &self.value
    }
}

impl<'a, T> AsMut<T> for Recycled<'a, T>
where
    T: Recyclable,
{
    fn as_mut(&mut self) -> &mut T {
        &mut self.value
    }
}

impl<'a, T> Deref for Recycled<'a, T>
where
    T: Recyclable,
{
    type Target = T;

    fn deref(&self) -> &Self::Target {
        &self.value
    }
}

impl<'a, T> DerefMut for Recycled<'a, T>
where
    T: Recyclable,
{
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.value
    }
}

impl<'a, T> Display for Recycled<'a, T>
where
    T: Recyclable + Display,
{
    fn fmt(&self, f: &mut Formatter) -> Result<(), fmt::Error> {
        write!(f, "{}", self.as_ref())
    }
}

impl<'a, T> Debug for Recycled<'a, T>
where
    T: Recyclable + Debug,
{
    fn fmt(&self, f: &mut Formatter) -> Result<(), fmt::Error> {
        write!(f, "{:?}", self.as_ref())
    }
}

impl<'a, T> PartialEq<T> for Recycled<'a, T>
where
    T: Recyclable + PartialEq,
{
    fn eq(&self, other: &T) -> bool {
        self.as_ref().eq(other)
    }
}

impl<'a, T> PartialOrd<T> for Recycled<'a, T>
where
    T: Recyclable + PartialOrd,
{
    fn partial_cmp(&self, other: &T) -> Option<Ordering> {
        self.as_ref().partial_cmp(other)
    }
}
#[cfg(test)]
mod tests {
    use super::*;

    use static_assertions::*;

    #[test]
    fn test_pool_send_and_sync() {
        assert_impl_all!(Pool<String>, Send, Sync);
    }

    #[test]
    fn test_builder() {
        let pool: Pool<String> = builder().with_starting_size(100).build();

        assert_eq!(pool.size(), 100);

        let value = pool.get();
        assert_eq!(pool.size(), 99);

        assert_eq!(*value, "");

        drop(value);

        assert_eq!(pool.size(), 100);
    }

    #[test]
    fn test_supplier() {
        let pool: Pool<String> = builder()
            .with_starting_size(4)
            .with_supplier(|| String::from("test"))
            .build();

        let mut value = pool.get();
        assert_eq!(*value, "test");

        value.push_str("bla");
        assert_eq!(*value, "testbla");
        drop(value);
    }
}