1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
//! Visitor generator for the rust language.
//!
//!
//! There are three variants of visitor in swc. Those are `Fold`, `VisitMut`,
//! `Visit`.
//!
//! # Comparisons
//!
//! ## `Fold` vs `VisitMut`
//!
//! `Fold` and `VisitMut` do almost identical tasks, but `Fold` is easier to use
//! while being slower and weak to stack overflow for very deep asts. `Fold` is
//! fast enough for almost all cases so it would be better to start with `Fold`.
//!
//! By very deep asts, I meant code like thousands of `a + a + a + a + ...`.
//!
//!
//! # `Fold`
//!
//! `Fold` takes ownership of value, which means you have to return the new
//! value. Returning new value means returning ownership of the value. But you
//! don't have to care about ownership or about managing memories while using
//! such visitors. `rustc` handles them automatically and all allocations will
//! be freed when it goes out of the scope.
//!
//! You can invoke your `Fold` implementation like `node.fold_with(&mut
//! visitor)` where `visitor` is your visitor. Note that as it takes ownership
//! of value, you have to call `node.fold_children_with(self)` in e.g. `fn
//! fold_module(&mut self, m: Module) -> Module` if you override the default
//! behavior. Also you have to store return value from `fold_children_with`,
//! like `let node = node.fold_children_with(self)`. Order of execution can be
//! controlled using this. If there is some logic that should be applied to the
//! parent first, you can call `fold_children_with` after such logic.
//!
//! # `VisitMut`
//!
//! `VisitMut` uses a mutable reference to AST nodes (e.g. `&mut Expr`). You can
//! use `MapWithMut` from `swc_ecma_transforms_base` to get owned value from a
//! mutable reference.
//!
//! You will typically use code like
//!
//! ```ignore
//! *e = return_value.take();
//! ```
//!
//! where `e = &mut Expr` and `return_value` is also `&mut Expr`. `take()` is an
//! extension method defined on `MapWithMut`.  It's almost identical to `Fold`,
//! so I'll skip memory management.
//!
//! You can invoke your `VisitMut` implementation like `node.visit_mut_with(&mut
//! visitor)` where `visitor` is your visitor. Again, you need to call
//! `node.visit_mut_children_with(self)` in visitor implementation if you want
//! to modify children nodes. You don't need to store the return value in this
//! case.
//!
//!
//! # `Visit`
//!
//!`Visit` uses non-mutable references to AST nodes. It can be used to see if
//! an AST node contains a specific node nested deeply in the AST. This is
//! useful for checking if AST node contains `this`. This is useful for lots of
//! cases - `this` in arrow expressions are special and we need to generate
//! different code if a `this` expression is used.
//!
//! You can use your `Visit` implementation like  `node.visit_with(&Invalid{
//! span: DUMY_SP, }, &mut visitor`. I think API is misdesigned, but it works
//! and there are really lots of code using `Visit` already.

pub use either::Either;
pub use swc_visit_macros::define;

pub mod util;

/// Visit all children nodes. This converts `VisitAll` to `Visit`. The type
/// parameter `V` should implement `VisitAll` and `All<V>` implements `Visit`.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct All<V> {
    pub visitor: V,
}

/// A visitor which visits node only if `enabled` is true.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Optional<V> {
    pub enabled: bool,
    pub visitor: V,
}

impl<V> Optional<V> {
    pub const fn new(visitor: V, enabled: bool) -> Self {
        Self { enabled, visitor }
    }
}

/// Trait for a pass which is designed to invoked multiple time to same input.
///
/// See [Repeat].
pub trait Repeated {
    /// Should run again?
    fn changed(&self) -> bool;

    /// Reset.
    fn reset(&mut self);
}

/// A visitor which applies `A` and then `B`.
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq)]
pub struct AndThen<A, B> {
    pub first: A,
    pub second: B,
}

/// Chains multiple visitor.
#[macro_export]
macro_rules! chain {
    ($a:expr, $b:expr) => {{
        use $crate::AndThen;

        AndThen {
            first: $a,
            second: $b,
        }
    }};

    ($a:expr, $b:expr,) => {
        chain!($a, $b)
    };

    ($a:expr, $b:expr,  $($rest:tt)+) => {{
        use $crate::AndThen;

        AndThen{
            first: $a,
            second: chain!($b, $($rest)*),
        }
    }};
}

/// A visitor which applies `V` again and again if `V` modifies the node.
///
/// # Note
/// `V` should return `true` from `changed()` to make the pass run multiple
/// time.
///
/// See: [Repeated]
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq)]
pub struct Repeat<V>
where
    V: Repeated,
{
    pub pass: V,
}

impl<V> Repeat<V>
where
    V: Repeated,
{
    pub fn new(pass: V) -> Self {
        Self { pass }
    }
}

impl<V> Repeated for Repeat<V>
where
    V: Repeated,
{
    fn changed(&self) -> bool {
        self.pass.changed()
    }

    fn reset(&mut self) {
        self.pass.reset()
    }
}

impl<A, B> Repeated for AndThen<A, B>
where
    A: Repeated,
    B: Repeated,
{
    fn changed(&self) -> bool {
        self.first.changed() || self.second.changed()
    }

    fn reset(&mut self) {
        self.first.reset();
        self.second.reset();
    }
}