1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
mod blend;

const BILINEAR_INTERPOLATION_BITS: u32 = 4;

const A32_SHIFT: u32 = 24;
const R32_SHIFT: u32 = 16;
const G32_SHIFT: u32 = 8;
const B32_SHIFT: u32 = 0;

pub use blend::*;

#[derive(Clone, Copy)]
pub struct Image<'a> {
    pub width: i32,
    pub height: i32,
    pub data: &'a [u32],
}

/// t is 0..256
pub fn lerp(a: u32, b: u32, t: u32) -> u32 {
    // we can reduce this to two multiplies
    // http://stereopsis.com/doubleblend.html
    let mask = 0xff00ff;
    let brb = ((b & 0xff00ff) * t) >> 8;
    let bag = ((b >> 8) & 0xff00ff) * t;
    let t = 256 - t;
    let arb = ((a & 0xff00ff) * t) >> 8;
    let aag = ((a >> 8) & 0xff00ff) * t;
    let rb = arb + brb;
    let ag = aag + bag;
    return (rb & mask) | (ag & !mask);
}

#[derive(Clone, Copy, Debug)]
pub struct GradientStop {
    pub position: f32,
    pub color: u32,
}

pub struct GradientSource {
    matrix: MatrixFixedPoint,
    lut: [u32; 257],
}

impl GradientSource {
    pub fn radial_gradient_eval(&self, x: u16, y: u16) -> u32 {
        let p = self.matrix.transform(x, y);
        // there's no chance that p will overflow when squared
        // so it's safe to use sqrt
        let px = p.x as f32;
        let py = p.y as f32;
        let mut distance = (px * px + py * py).sqrt() as u32;
        distance >>= 8;
        if distance > 32768 {
            distance = 32786;
        }
        self.lut[(distance >> 7) as usize]
    }

    pub fn linear_gradient_eval(&self, x: u16, y: u16) -> u32 {
        let p = self.matrix.transform(x, y);
        let mut lx = p.x >> 16;
        if lx >= 256 {
            lx = 256;
        }
        if lx < 0 {
            lx = 0;
        }
        self.lut[lx as usize]
    }
}

#[derive(Clone, Debug)]
pub struct Gradient {
    pub stops: Vec<GradientStop>
}

impl Gradient {
    pub fn make_source(&self, matrix: &MatrixFixedPoint) -> Box<GradientSource> {
        let mut source = Box::new(GradientSource { matrix: (*matrix).clone(), lut: [0; 257] });
        self.build_lut(&mut source.lut);
        source
    }
    fn build_lut(&self, lut: &mut [u32; 257]) {
        let mut stop_idx = 0;
        let mut stop = &self.stops[stop_idx];

        let mut last_color = stop.color;
        let mut last_pos = 0;

        let mut next_color = last_color;
        let mut next_pos = (256. * stop.position) as u32;

        let mut i = 0;
        while i <= 256 {
            while next_pos <= i {
                stop_idx += 1;
                last_color = next_color;
                if stop_idx >= self.stops.len() {
                    stop = &self.stops[self.stops.len() - 1];
                    next_pos = 256;
                    next_color = stop.color;
                    break;
                } else {
                    stop = &self.stops[stop_idx];
                }
                next_pos = (256. * stop.position) as u32;
                next_color = stop.color;
            }
            let inverse = (256 * 256) / (next_pos - last_pos);
            let mut t = 0;
            // XXX we could actually avoid doing any multiplications inside
            // this loop by accumulating (next_color - last_color)*inverse
            while i <= next_pos {
                lut[i as usize] = lerp(last_color, next_color, t >> 8);
                t += inverse;
                i += 1;
            }
            last_pos = next_pos;
        }
    }
}

pub trait PixelFetch {
    fn get_pixel(bitmap: &Image,  x: i32,  y: i32) -> u32;
}


pub struct PadFetch;
impl PixelFetch for PadFetch {
    fn get_pixel(bitmap: &Image, mut x: i32, mut y: i32) -> u32 {
        if x < 0 {
            x = 0;
        }
        if x >= bitmap.width {
            x = bitmap.width - 1;
        }

        if y < 0 {
            y = 0;
        }
        if y >= bitmap.height {
            y = bitmap.height - 1;
        }

        return bitmap.data[(y * bitmap.width + x) as usize];
    }
}

pub struct RepeatFetch;
impl PixelFetch for RepeatFetch {
    fn get_pixel(bitmap: &Image, mut x: i32, mut y: i32) -> u32 {

        // XXX: This is a very slow approach to repeating.
        // We should instead do the wrapping in the iterator
        x = x % bitmap.width;
        if x < 0 {
            x = x + bitmap.width;
        }

        y = y % bitmap.height;
        if y < 0 {
            y = y + bitmap.height;
        }

        return bitmap.data[(y * bitmap.width + x) as usize];
    }
}


/* Inspired by Filter_32_opaque from Skia */
fn bilinear_interpolation(
    tl: u32,
    tr: u32,
    bl: u32,
    br: u32,
    mut distx: u32,
    mut disty: u32,
) -> u32 {
    let distxy;
    let distxiy;
    let distixy;
    let distixiy;
    let mut lo;
    let mut hi;

    distx <<= 4 - BILINEAR_INTERPOLATION_BITS;
    disty <<= 4 - BILINEAR_INTERPOLATION_BITS;

    distxy = distx * disty;
    distxiy = (distx << 4) - distxy; /* distx * (16 - disty) */
    distixy = (disty << 4) - distxy; /* disty * (16 - distx) */
    distixiy = 16 * 16 - (disty << 4) - (distx << 4) + distxy; /* (16 - distx) * (16 - disty) */

    lo = (tl & 0xff00ff) * distixiy;
    hi = ((tl >> 8) & 0xff00ff) * distixiy;

    lo += (tr & 0xff00ff) * distxiy;
    hi += ((tr >> 8) & 0xff00ff) * distxiy;

    lo += (bl & 0xff00ff) * distixy;
    hi += ((bl >> 8) & 0xff00ff) * distixy;

    lo += (br & 0xff00ff) * distxy;
    hi += ((br >> 8) & 0xff00ff) * distxy;

    ((lo >> 8) & 0xff00ff) | (hi & !0xff00ff)
}

const FIXED_FRACTION_BITS: u32 = 16;
pub const FIXED_ONE: i32 = 1 << FIXED_FRACTION_BITS;

fn bilinear_weight(x: Fixed) -> u32 {
    // discard the unneeded bits of precision
    let reduced = x >> (FIXED_FRACTION_BITS - BILINEAR_INTERPOLATION_BITS);
    // extract the remaining fraction
    let fraction = reduced & ((1 << BILINEAR_INTERPOLATION_BITS) - 1);
    fraction as u32
}

type Fixed = i32;

fn fixed_to_int(x: Fixed) -> i32 {
    x >> FIXED_FRACTION_BITS
}

// there are various tricks the can be used
// to make this faster. Let's just do simplest
// thing for now
pub fn float_to_fixed(x: f32) -> Fixed {
    (x * (1 << FIXED_FRACTION_BITS) as f32) as i32
}

pub fn fetch_bilinear<Fetch: PixelFetch>(image: &Image, x: Fixed, y: Fixed) -> u32 {
    let dist_x = bilinear_weight(x);
    let dist_y = bilinear_weight(y);

    let x1 = fixed_to_int(x);
    let y1 = fixed_to_int(y);
    let x2 = x1 + 1;
    let y2 = y1 + 1;

    let tl = Fetch::get_pixel(image, x1, y1);
    let tr = Fetch::get_pixel(image, x2, y1);
    let bl = Fetch::get_pixel(image, x1, y2);
    let br = Fetch::get_pixel(image, x2, y2);

    bilinear_interpolation(tl, tr, bl, br, dist_x, dist_y)
}

pub struct PointFixedPoint {
    pub x: Fixed,
    pub y: Fixed,
}

#[derive(Clone)]
pub struct MatrixFixedPoint {
    pub xx: Fixed,
    pub xy: Fixed,
    pub yx: Fixed,
    pub yy: Fixed,
    pub x0: Fixed,
    pub y0: Fixed,
}

impl MatrixFixedPoint {
    pub fn transform(&self, x: u16, y: u16) -> PointFixedPoint {
        let x = x as i32;
        let y = y as i32;
        // when taking integer parameters we can use a regular mulitply instead of a fixed one
        PointFixedPoint {
            x: x * self.xx + self.xy * y + self.x0,
            y: y * self.yy + self.yx * x + self.y0,
        }
    }
}

fn packed_alpha(x: u32) -> u32 {
    x >> A32_SHIFT
}

// this is an approximation of true 'over' that does a division by 256 instead
// of 255. It is the same style of blending that Skia does.
pub fn over(src: u32, dst: u32) -> u32 {
    let a = packed_alpha(src);
    let a = 256 - a;
    let mask = 0xff00ff;
    let rb = ((dst & 0xff00ff) * a) >> 8;
    let ag = ((dst >> 8) & 0xff00ff) * a;
    src + (rb & mask) | (ag & !mask)
}

pub fn alpha_to_alpha256(alpha: u32) -> u32 {
    alpha + 1
}

/** Calculates 256 - (value * alpha256) / 255 in range [0,256],
 *  for [0,255] value and [0,256] alpha256. */
fn alpha_mul_inv256(value: u32, alpha256: u32) -> u32 {
    let prod = 0xFFFF - value * alpha256;
    return (prod + (prod >> 8)) >> 8;
}

/** Calculates (value * alpha256) / 255 in range [0,256],
 *  for [0,255] value and [0,256] alpha256. */
fn alpha_mul_256(value: u32, alpha256: u32) -> u32 {
    let prod = value * alpha256;
    return (prod + (prod >> 8)) >> 8;
}

pub fn muldiv255(a: u32, b: u32) -> u32 {
    let tmp = a * b + 0x128;
    ((tmp + (tmp >> 8)) >> 8)
}

pub fn div255(a: u32) -> u32 {
    let tmp = a + 0x128;
    ((tmp + (tmp >> 8)) >> 8)
}

// This approximates the division by 255 using a division by 256.
// It matches the behaviour of SkBlendARGB32 from Skia in 2017.
// The behaviour of this function was changed in 2016 by Lee Salzman
// in Skia:40254c2c2dc28a34f96294d5a1ad94a99b0be8a6 to keep more of the
// intermediate precision
pub fn over_in(src: u32, dst: u32, alpha: u32) -> u32 {
    let src_alpha = alpha_to_alpha256(alpha);
    let dst_alpha = alpha_mul_inv256(packed_alpha(src), src_alpha);

    let mask = 0xFF00FF;

    let src_rb = (src & mask) * src_alpha;
    let src_ag = ((src >> 8) & mask) * src_alpha;

    let dst_rb = (dst & mask) * dst_alpha;
    let dst_ag = ((dst >> 8) & mask) * dst_alpha;

    // we sum src and dst before reducing to 8 bit to avoid accumulating rounding errors
    return (((src_rb + dst_rb) >> 8) & mask) | ((src_ag + dst_ag) & !mask);
}

// Similar to over_in but includes an additional clip alpha value
pub fn over_in_in(src: u32, dst: u32, mask: u32, clip: u32) -> u32 {
    let src_alpha = alpha_to_alpha256(mask);
    let src_alpha = alpha_mul_256(src_alpha, clip);
    let dst_alpha = alpha_mul_inv256(packed_alpha(src), src_alpha);

    let mask = 0xFF00FF;

    let src_rb = (src & mask) * src_alpha;
    let src_ag = ((src >> 8) & mask) * src_alpha;

    let dst_rb = (dst & mask) * dst_alpha;
    let dst_ag = ((dst >> 8) & mask) * dst_alpha;

    // we sum src and dst before reducing to 8 bit to avoid accumulating rounding errors
    return (((src_rb + dst_rb) >> 8) & mask) | ((src_ag + dst_ag) & !mask);
}

pub fn alpha_lerp(src: u32, dst: u32, mask: u32, clip: u32) -> u32 {
    let alpha = alpha_mul_256(alpha_to_alpha256(mask), clip);
    return lerp(src, dst, alpha);
}