1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

/*!
`svgfilters` provides low-level [SVG filters](https://www.w3.org/TR/SVG11/filters.html)
implementation.

`svgfilters` doesn't implement the whole filters workflow, just operations on raster images.
Filter region calculation, image colors (un)premultiplication, input validation,
filter primitives order, transformations, etc. should be implemented by the caller.

## Implemented filters

- [feColorMatrix](https://www.w3.org/TR/SVG11/filters.html#feColorMatrixElement)
- [feComponentTransfer](https://www.w3.org/TR/SVG11/filters.html#feComponentTransferElement)
- [feComposite](https://www.w3.org/TR/SVG11/filters.html#feCompositeElement)
  Only the arithmetic operator is supported since other one are pretty common
  and should be implemented by the 2D library itself.
- [feConvolveMatrix](https://www.w3.org/TR/SVG11/filters.html#feConvolveMatrixElement)
- [feDiffuseLighting](https://www.w3.org/TR/SVG11/filters.html#feDiffuseLightingElement)
- [feDisplacementMap](https://www.w3.org/TR/SVG11/filters.html#feDisplacementMapElement)
- [feGaussianBlur](https://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement)
  Box blur and IIR blur variants are available.
- [feMorphology](https://www.w3.org/TR/SVG11/filters.html#feMorphologyElement)
- [feSpecularLighting](https://www.w3.org/TR/SVG11/filters.html#feSpecularLightingElement)
- [feTurbulence](https://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement)

## Unimplemented filters

- [feFlood](https://www.w3.org/TR/SVG11/filters.html#feFloodElement),
  because it's just a simple fill.
- [feImage](https://www.w3.org/TR/SVG11/filters.html#feImageElement),
  because it can be implemented only by a caller.
- [feTile](https://www.w3.org/TR/SVG11/filters.html#feTileElement),
  because it's basically a fill with pattern.
- [feMerge](https://www.w3.org/TR/SVG11/filters.html#feMergeElement),
  because it's just a layer compositing and a 2D library will be faster.
- [feOffset](https://www.w3.org/TR/SVG11/filters.html#feOffsetElement),
  because it's just a layer compositing with offset.

## Performance

The library isn't well optimized yet, but it's mostly allocation free.
Some methods will allocate necessary, temporary buffers which will be reflected in the documentation.
But majority of methods will work on provided buffers.
*/

#![doc(html_root_url = "https://docs.rs/svgfilters/0.2.0")]

#![forbid(unsafe_code)]
#![warn(missing_docs)]

use float_cmp::ApproxEqUlps;
pub use rgb::{RGB8, RGBA8};

mod box_blur;
mod color_matrix;
mod component_transfer;
mod composite;
mod convolve_matrix;
mod displacement_map;
mod iir_blur;
mod lighting;
mod morphology;
mod turbulence;

pub use box_blur::box_blur;
pub use color_matrix::{ColorMatrix, color_matrix};
pub use component_transfer::{TransferFunction, component_transfer};
pub use composite::arithmetic_composite;
pub use convolve_matrix::{ConvolveMatrix, EdgeMode, convolve_matrix};
pub use displacement_map::{ColorChannel, displacement_map};
pub use iir_blur::iir_blur;
pub use lighting::{LightSource, diffuse_lighting, specular_lighting};
pub use morphology::{MorphologyOperator, morphology};
pub use turbulence::turbulence;


/// A normalized value.
///
/// Just like `f64` but immutable and guarantee to be in a 0..1 range.
#[derive(Clone, Copy, Debug)]
pub struct NormalizedValue(f64);

impl NormalizedValue {
    /// Creates a new `NormalizedValue` value.
    #[inline]
    pub fn new(n: f64) -> Self {
        debug_assert!(n.is_finite());
        debug_assert!(n >= 0.0 && n <= 1.0);
        NormalizedValue(f64_bound(0.0, n, 1.0))
    }

    /// Returns an underlying value.
    #[inline]
    fn value(&self) -> f64 {
        self.0
    }
}

impl From<f64> for NormalizedValue {
    fn from(v: f64) -> Self {
        NormalizedValue::new(v)
    }
}


/// An image reference.
///
/// Image pixels should be stored in RGBA order.
///
/// Some filters will require premultipled channels, some not.
/// See specific filter documentation for details.
#[derive(Clone, Copy)]
pub struct ImageRef<'a> {
    data: &'a [RGBA8],
    width: u32,
    height: u32,
}

impl<'a> ImageRef<'a> {
    /// Creates a new image reference.
    ///
    /// Doesn't clone the provided data.
    #[inline]
    pub fn new(data: &'a [RGBA8], width: u32, height: u32) -> Self {
        ImageRef { data, width, height }
    }

    #[inline]
    fn alpha_at(&self, x: u32, y: u32) -> i16 {
        self.data[(self.width * y + x) as usize].a as i16
    }
}


/// A mutable `ImageRef` variant.
pub struct ImageRefMut<'a> {
    data: &'a mut [RGBA8],
    width: u32,
    height: u32,
}

impl<'a> ImageRefMut<'a> {
    /// Creates a new mutable image reference.
    ///
    /// Doesn't clone the provided data.
    #[inline]
    pub fn new(data: &'a mut [RGBA8], width: u32, height: u32) -> Self {
        ImageRefMut { data, width, height }
    }

    #[inline]
    fn pixel_at(&self, x: u32, y: u32) -> RGBA8 {
        self.data[(self.width * y + x) as usize]
    }

    #[inline]
    fn pixel_at_mut(&mut self, x: u32, y: u32) -> &mut RGBA8 {
        &mut self.data[(self.width * y + x) as usize]
    }
}


/// Multiplies provided pixels alpha.
pub fn multiply_alpha(data: &mut [RGBA8]) {
    for p in data {
        let a = p.a as f64 / 255.0;
        p.b = (p.b as f64 * a + 0.5) as u8;
        p.g = (p.g as f64 * a + 0.5) as u8;
        p.r = (p.r as f64 * a + 0.5) as u8;
    }
}

/// Demultiplies provided pixels alpha.
pub fn demultiply_alpha(data: &mut [RGBA8]) {
    for p in data {
        let a = p.a as f64 / 255.0;
        p.b = (p.b as f64 / a + 0.5) as u8;
        p.g = (p.g as f64 / a + 0.5) as u8;
        p.r = (p.r as f64 / a + 0.5) as u8;
    }
}


/// Precomputed sRGB to LinearRGB table.
///
/// Since we are storing the result in `u8`, there is no need to compute those
/// values each time. Mainly because it's very expensive.
///
/// ```text
/// if (C_srgb <= 0.04045)
///     C_lin = C_srgb / 12.92;
///  else
///     C_lin = pow((C_srgb + 0.055) / 1.055, 2.4);
/// ```
///
/// Thanks to librsvg for the idea.
const SRGB_TO_LINEAR_RGB_TABLE: &[u8; 256] = &[
    0,   0,   0,   0,   0,   0,  0,    1,   1,   1,   1,   1,   1,   1,   1,   1,
    1,   1,   2,   2,   2,   2,  2,    2,   2,   2,   3,   3,   3,   3,   3,   3,
    4,   4,   4,   4,   4,   5,  5,    5,   5,   6,   6,   6,   6,   7,   7,   7,
    8,   8,   8,   8,   9,   9,  9,   10,  10,  10,  11,  11,  12,  12,  12,  13,
    13,  13,  14,  14,  15,  15,  16,  16,  17,  17,  17,  18,  18,  19,  19,  20,
    20,  21,  22,  22,  23,  23,  24,  24,  25,  25,  26,  27,  27,  28,  29,  29,
    30,  30,  31,  32,  32,  33,  34,  35,  35,  36,  37,  37,  38,  39,  40,  41,
    41,  42,  43,  44,  45,  45,  46,  47,  48,  49,  50,  51,  51,  52,  53,  54,
    55,  56,  57,  58,  59,  60,  61,  62,  63,  64,  65,  66,  67,  68,  69,  70,
    71,  72,  73,  74,  76,  77,  78,  79,  80,  81,  82,  84,  85,  86,  87,  88,
    90,  91,  92,  93,  95,  96,  97,  99, 100, 101, 103, 104, 105, 107, 108, 109,
    111, 112, 114, 115, 116, 118, 119, 121, 122, 124, 125, 127, 128, 130, 131, 133,
    134, 136, 138, 139, 141, 142, 144, 146, 147, 149, 151, 152, 154, 156, 157, 159,
    161, 163, 164, 166, 168, 170, 171, 173, 175, 177, 179, 181, 183, 184, 186, 188,
    190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220,
    222, 224, 226, 229, 231, 233, 235, 237, 239, 242, 244, 246, 248, 250, 253, 255,
];

/// Precomputed LinearRGB to sRGB table.
///
/// Since we are storing the result in `u8`, there is no need to compute those
/// values each time. Mainly because it's very expensive.
///
/// ```text
/// if (C_lin <= 0.0031308)
///     C_srgb = C_lin * 12.92;
/// else
///     C_srgb = 1.055 * pow(C_lin, 1.0 / 2.4) - 0.055;
/// ```
///
/// Thanks to librsvg for the idea.
const LINEAR_RGB_TO_SRGB_TABLE: &[u8; 256] = &[
    0,  13,  22,  28,  34,  38,  42,  46,  50,  53,  56,  59,  61,  64,  66,  69,
    71,  73,  75,  77,  79,  81,  83,  85,  86,  88,  90,  92,  93,  95,  96,  98,
    99, 101, 102, 104, 105, 106, 108, 109, 110, 112, 113, 114, 115, 117, 118, 119,
    120, 121, 122, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136,
    137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 148, 149, 150, 151,
    152, 153, 154, 155, 155, 156, 157, 158, 159, 159, 160, 161, 162, 163, 163, 164,
    165, 166, 167, 167, 168, 169, 170, 170, 171, 172, 173, 173, 174, 175, 175, 176,
    177, 178, 178, 179, 180, 180, 181, 182, 182, 183, 184, 185, 185, 186, 187, 187,
    188, 189, 189, 190, 190, 191, 192, 192, 193, 194, 194, 195, 196, 196, 197, 197,
    198, 199, 199, 200, 200, 201, 202, 202, 203, 203, 204, 205, 205, 206, 206, 207,
    208, 208, 209, 209, 210, 210, 211, 212, 212, 213, 213, 214, 214, 215, 215, 216,
    216, 217, 218, 218, 219, 219, 220, 220, 221, 221, 222, 222, 223, 223, 224, 224,
    225, 226, 226, 227, 227, 228, 228, 229, 229, 230, 230, 231, 231, 232, 232, 233,
    233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238, 238, 239, 239, 240, 240,
    241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246, 246, 247, 247, 248,
    248, 249, 249, 250, 250, 251, 251, 251, 252, 252, 253, 253, 254, 254, 255, 255,
];

/// Converts input pixel from sRGB into LinearRGB.
///
/// Provided pixels should have an **unpremultiplied alpha**.
///
/// RGB channels order of the input image doesn't matter, but alpha channel must be the last one.
pub fn into_linear_rgb(data: &mut [RGBA8]) {
    for p in data {
        p.r = SRGB_TO_LINEAR_RGB_TABLE[p.r as usize];
        p.g = SRGB_TO_LINEAR_RGB_TABLE[p.g as usize];
        p.b = SRGB_TO_LINEAR_RGB_TABLE[p.b as usize];
    }
}

/// Converts input pixel from LinearRGB into sRGB.
///
/// Provided pixels should have an **unpremultiplied alpha**.
///
/// RGB channels order of the input image doesn't matter, but alpha channel must be the last one.
pub fn from_linear_rgb(data: &mut [RGBA8]) {
    for p in data {
        p.r = LINEAR_RGB_TO_SRGB_TABLE[p.r as usize];
        p.g = LINEAR_RGB_TO_SRGB_TABLE[p.g as usize];
        p.b = LINEAR_RGB_TO_SRGB_TABLE[p.b as usize];
    }
}


// TODO: https://github.com/rust-lang/rust/issues/44095
#[inline]
fn f64_bound(min: f64, val: f64, max: f64) -> f64 {
    debug_assert!(min.is_finite());
    debug_assert!(val.is_finite());
    debug_assert!(max.is_finite());

    if val > max {
        max
    } else if val < min {
        min
    } else {
        val
    }
}


trait FuzzyEq<Rhs: ?Sized = Self> {
    fn fuzzy_eq(&self, other: &Rhs) -> bool;

    #[inline]
    fn fuzzy_ne(&self, other: &Rhs) -> bool {
        !self.fuzzy_eq(other)
    }
}

trait FuzzyZero: FuzzyEq {
    fn is_fuzzy_zero(&self) -> bool;
}

impl FuzzyEq for f64 {
    #[inline]
    fn fuzzy_eq(&self, other: &f64) -> bool {
        self.approx_eq_ulps(other, 4)
    }
}

impl FuzzyZero for f64 {
    #[inline]
    fn is_fuzzy_zero(&self) -> bool {
        self.fuzzy_eq(&0.0)
    }
}