1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
// Copyright 2016 Jason Lingle
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Miscellaneous things used to integrate other code with Supercow, but which
//! are not of interest to most client developers.

use std::borrow::Borrow;
use std::ffi::{CStr, OsStr};
use std::marker::PhantomData;
use std::mem;
use std::path::Path;
use std::ptr;
use std::rc::Rc;
use std::sync::Arc;

/// Marker trait indicating a `Deref`-like which always returns the same
/// reference.
///
/// This is not intended for general use outside Supercow. Notably, mundane
/// references satisfy this trait's requirements, but deliberately do not
/// implement it. It is also not a subtrait of `Deref` due to some additional
/// special logic around boxes.
///
/// ## Unsafety
///
/// Behaviour is undefined if the implementation does not always return the
/// same reference from `const_deref()` for any particular implementing value
/// (including if that value is moved or cloned).
pub unsafe trait ConstDeref {
    /// The type this value dereferences to.
    type Target : ?Sized;
    /// Returns the (constant) value that this value dereferences to.
    fn const_deref(&self) -> &Self::Target;
}

unsafe impl<T : ?Sized> ConstDeref for Rc<T> {
    type Target = T;
    fn const_deref(&self) -> &T { self }
}

unsafe impl<T : ?Sized> ConstDeref for Arc<T> {
    type Target = T;
    fn const_deref(&self) -> &T { self }
}

unsafe impl<T : ConstDeref + ?Sized> ConstDeref for Box<T> {
    type Target = T::Target;
    fn const_deref(&self) -> &T::Target {
        (**self).const_deref()
    }
}


/// Trait for `ConstDeref` implementations which can be constructed in a
/// two-step process.
///
/// This is used by `Supercow` to safely promote owned values to shared values.
/// A two-step process is necessary because the implementation must atomically
/// transfer ownership of the value and so must set everything up first in case
/// setup panics.
///
/// Essentially, such shared references actually hold an `Option<Target>` which
/// defaults to `None`, and panic if dereferenced before the value is set.
pub trait TwoStepShared<OWNED, BORROWED : ?Sized> {
    /// Returns a new, empty instance of `Self`.
    fn new_two_step() -> Self;
    /// Returns the internal `Option<T>` backing this value.
    ///
    /// ## Unsafety
    ///
    /// This call may assume that `self` was produced by a call to
    /// `new_two_step` on the same implementation. (This is to allow
    /// downcasting without requiring `Any` which in turn requires `'static`.)
    ///
    /// The address of the value inside `Some` may not be altered by the
    /// implementation.
    unsafe fn deref_holder(&mut self) -> &mut Option<OWNED>;
}

macro_rules! twostepwrapper { ($outer:ident, $inner:ident) => {
    /// Wrapper providing a `TwoStepShared` implementation.
    pub struct $outer<T, B : ?Sized>($inner<Option<T>>, PhantomData<B>);
    impl<T, B : ?Sized> Clone for $outer<T, B> {
        fn clone(&self) -> Self {
            $outer(self.0.clone(), PhantomData)
        }
    }

    impl<T, B : ?Sized> TwoStepShared<T, B> for $outer<T, B>
    where T : SafeBorrow<B> {
        fn new_two_step() -> Self {
            $outer($inner::new(None), PhantomData)
        }
        unsafe fn deref_holder(&mut self) -> &mut Option<T> {
            // Safety: No operation here is actually unsafe.
            $inner::get_mut(&mut self.0)
                .expect("Two-step wrapper already cloned")
        }
    }
} }
twostepwrapper!(TwoStepRc, Rc);
twostepwrapper!(TwoStepArc, Arc);

/// The maximum displacement (relative to the start of the object) that a
/// reference pointing into `self` from an instance of `SafeBorrow` may have.
///
/// This value is deliberately conservative to account for other memory layout
/// factors.
pub const MAX_INTERNAL_BORROW_DISPLACEMENT: usize = 2048;

/// Extension of `Borrow` used to allow `Supercow::to_mut()` to work safely.
///
/// ## Unsafety
///
/// Behaviour is undefined if the `borrow()` implementation may return a
/// reference into `self` which is more than `MAX_INTERNAL_BORROW_DISPLACEMENT`
/// bytes beyond the base of `self`.
pub unsafe trait SafeBorrow<T : ?Sized>: Borrow<T> {
    /// Given `ptr`, which was obtained from a prior call to `Self::borrow()`,
    /// return a value with the same nominal lifetime which is guaranteed to
    /// survive mutations to `Self`.
    ///
    /// Types which implement `Borrow` by pure, constant pointer arithmetic on
    /// `self` can simply return `ptr` unmodified. Other types typically need
    /// to provide some static reference, such as the empty string for `&str`.
    ///
    /// ## Unsafety
    ///
    /// Behaviour is undefined if this call returns `ptr`, but a mutation to
    /// `Self` could invalidate the reference.
    fn borrow_replacement<'a>(ptr: &'a T) -> &'a T;
}
unsafe impl<T : ?Sized> SafeBorrow<T> for T {
    fn borrow_replacement(ptr: &T) -> &T { ptr }
}
unsafe impl<B, T> SafeBorrow<[B]> for T where T : Borrow<[B]> {
    fn borrow_replacement(_: &[B]) -> &[B] {
        &[]
    }
}
unsafe impl<T> SafeBorrow<str> for T where T : Borrow<str> {
    fn borrow_replacement(_: &str) -> &str { "" }
}
unsafe impl<T> SafeBorrow<CStr> for T
where T : Borrow<CStr> {
    fn borrow_replacement(_: &CStr) -> &CStr {
        Default::default()
    }
}
unsafe impl<T> SafeBorrow<OsStr> for T
where T : Borrow<OsStr> {
    fn borrow_replacement(_: &OsStr) -> &OsStr {
        OsStr::new("")
    }
}
unsafe impl<T> SafeBorrow<Path> for T
where T : Borrow<Path> {
    fn borrow_replacement(_: &Path) -> &Path {
        Path::new("")
    }
}

/// Marker trait identifying a pointer type which begins with an absolute
/// address and contains no other address-dependent information.
///
/// `Supercow` expects to be able to read the first machine-pointer-sized value
/// of such a pointer and perform address arithmetic upon it.
///
/// There is no utility of applying this trait to anything other than a const
/// pointer.
///
/// ## Unsafety
///
/// Behaviour is undefined if a marked type does not begin with a real pointer
/// to a value (with the usual exception of ZSTs, where the pointer does not
/// need to point to anything in particular) or if other parts of the type
/// contain address-dependent information.
///
/// Behaviour is undefined if the pointer has any `Drop` implementation,
/// should a future Rust version make such things possible.
pub unsafe trait PointerFirstRef : Copy { }

unsafe impl<T : Sized> PointerFirstRef for *const T { }
unsafe impl<T> PointerFirstRef for *const [T] { }
unsafe impl PointerFirstRef for *const str { }
unsafe impl PointerFirstRef for *const ::std::ffi::CStr { }
unsafe impl PointerFirstRef for *const ::std::ffi::OsStr { }
unsafe impl PointerFirstRef for *const ::std::path::Path { }

/// Like `std::convert::From`, but without the blanket implementations that
/// cause problems for `supercow_features!`.
///
/// ## Unsafety
///
/// The conversion may not invalidate the address returned by
/// `T::const_deref()` if `T` is `ConstDeref`.
pub unsafe trait SharedFrom<T> {
    /// Converts the given `T` to `Self`.
    fn shared_from(t: T) -> Self;
}
unsafe impl <T> SharedFrom<Rc<T>> for Rc<T> {
    fn shared_from(t: Rc<T>) -> Rc<T> { t }
}
unsafe impl <T> SharedFrom<Arc<T>> for Arc<T> {
    fn shared_from(t: Arc<T>) -> Arc<T> { t }
}

/// Describes how an `OWNED` or `SHARED` value is stored in a `Supercow`.
///
/// All notes for `*_b` functions are the same as the corresponding `*_a`
/// functions.
///
/// ## Unsafety
///
/// `Supercow` relies strongly on the contracts of the functions in this trait
/// being implemented correctly.
///
/// No function may mutate the `A` or `B` values.
pub unsafe trait OwnedStorage<A, B> : Default {
    /// Allocates the given owned value.
    ///
    /// `self` is a `Default`-initialised instance.
    ///
    /// Returns a pointer with 2-byte alignment.
    ///
    /// ## Unsafety
    ///
    /// Behaviour is undefined if this call returns a pointer with incorrect
    /// alignment.
    ///
    /// Behaviour is undefined if the returned value is an address inside
    /// `self` offset by more than `MAX_INTERNAL_BORROW_DISPLACEMENT/2` (note
    /// division by two).
    ///
    /// Behaviour is undefined if this returns a null pointer. (But the
    /// returned pointer does not need to actually point at anything.)
    fn allocate_a(&mut self, value: A) -> *mut ();
    /// See `allocate_a`.
    fn allocate_b(&mut self, value: B) -> *mut ();
    /// Extracts the immutable reference from the saved pointer and storage.
    ///
    /// ## Unsafety
    ///
    /// This call may assume that `ptr` is exactly a (2-byte-aligned) value it
    /// returned from `allocate_a`, and that `self` was initialised by a call
    /// to `allocate_a`.
    unsafe fn get_ptr_a<'a>(&'a self, ptr: *mut ()) -> &'a A;
    /// See `get_ptr_a`.
    unsafe fn get_ptr_b<'a>(&'a self, ptr: *mut ()) -> &'a B;
    /// Extracts the mutable reference from the saved pointer and storage.
    ///
    /// ## Unsafety
    ///
    /// This call may assume that `ptr` is exactly a (2-byte-aligned) value it
    /// returned from `allocate_a` and that `self` was initialised by a call to
    /// `allocate_a`.
    unsafe fn get_mut_a<'a>(&'a mut self, ptr: *mut ()) -> &'a mut A;
    /// See `get_mut_a`.
    unsafe fn get_mut_b<'a>(&'a mut self, ptr: *mut ()) -> &'a mut B;
    /// Releases any allocations that would not be released by `Stored`
    /// being dropped.
    ///
    /// ## Unsafety
    ///
    /// This call may assume that `ptr` is exactly a (2-byte-aligned) value it
    /// returned from `allocate_a`.
    ///
    /// Once this function is called, the given `ptr` is considered invalid and
    /// any further use is undefined.
    ///
    /// This call must not panic (assuming the input contract is satisfied).
    unsafe fn deallocate_a(&mut self, ptr: *mut ());
    /// See `deallocate_b`.
    unsafe fn deallocate_b(&mut self, ptr: *mut ());
    /// Like `deallocate_a()`, but also return the owned value.
    unsafe fn deallocate_into_a(&mut self, ptr: *mut ()) -> A;
    /// See `deallocate_into_a`.
    unsafe fn deallocate_into_b(&mut self, ptr: *mut ()) -> B;

    /// Returns whether this storage implementation ever causes the owned
    /// object to be stored internally to the `Supercow`.
    ///
    /// ## Unsafety
    ///
    /// Behaviour is undefined if this returns `false` but the owned value is
    /// stored within the `Supercow`.
    fn is_internal_storage() -> bool;
}

/// Causes the `OWNED` or `SHARED` value of a `Supercow` to be stored inline.
///
/// This makes allocation of owned `Supercow`s much faster, at the expense of
/// making the `Supercow` itself much bigger (since it now must contain the
/// whole object).
#[derive(Clone, Copy, Debug)]
pub struct InlineStorage<A, B>(InlineStorageImpl<A, B>);

#[derive(Clone, Copy, Debug)]
enum InlineStorageImpl<A, B> {
    None,
    A(A),
    B(B),
}

impl<A, B> Default for InlineStorage<A, B> {
    fn default() -> Self {
        InlineStorage(InlineStorageImpl::None)
    }
}

unsafe impl<A, B> OwnedStorage<A, B> for InlineStorage<A, B> {
    #[inline]
    fn allocate_a(&mut self, value: A) -> *mut () {
        self.0 = InlineStorageImpl::A(value);
        2usize as *mut ()
    }

    #[inline]
    fn allocate_b(&mut self, value: B) -> *mut () {
        self.0 = InlineStorageImpl::B(value);
        2usize as *mut ()
    }

    #[inline]
    unsafe fn get_ptr_a<'a>(&'a self, _: *mut ()) -> &'a A {
        match self.0 {
            InlineStorageImpl::A(ref r) => r,
            _ => unreachable!(),
        }
    }

    #[inline]
    unsafe fn get_ptr_b<'a>(&'a self, _: *mut ()) -> &'a B {
        match self.0 {
            InlineStorageImpl::B(ref r) => r,
            _ => unreachable!(),
        }
    }

    #[inline]
    unsafe fn get_mut_a<'a>(&'a mut self, _: *mut ()) -> &'a mut A {
        match self.0 {
            InlineStorageImpl::A(ref mut r) => r,
            _ => unreachable!(),
        }
    }

    #[inline]
    unsafe fn get_mut_b<'a>(&'a mut self, _: *mut ()) -> &'a mut B {
        match self.0 {
            InlineStorageImpl::B(ref mut r) => r,
            _ => unreachable!(),
        }
    }

    #[inline]
    unsafe fn deallocate_a(&mut self, _: *mut ()) { }

    #[inline]
    unsafe fn deallocate_b(&mut self, _: *mut ()) { }

    #[inline]
    unsafe fn deallocate_into_a(&mut self, _: *mut ()) -> A {
        match mem::replace(&mut self.0, InlineStorageImpl::None) {
            InlineStorageImpl::A(v) => v,
            _ => unreachable!(),
        }
    }

    #[inline]
    unsafe fn deallocate_into_b(&mut self, _: *mut ()) -> B {
        match mem::replace(&mut self.0, InlineStorageImpl::None) {
            InlineStorageImpl::B(v) => v,
            _ => unreachable!(),
        }
    }

    #[inline]
    fn is_internal_storage() -> bool { true }
}

/// Used to give arbitrary values at least pointer alignment without making
/// them otherwise bigger.
///
/// This likely isn't strictly necessary, since any allocator has an inherent
/// alignment anyway, but it doesn't hurt to be explicit.
type Aligned<T> = ([*const();0], T);

/// Causes the `OWNED` or `SHARED` value of a `Supercow` to be stored in a
/// `Box`.
///
/// This makes allocation of owned `Supercow`s more expensive, but incurs zero
/// space overhead within the `Supercow`. It also results in a faster `Deref`
/// implementation.
#[derive(Debug, Clone, Copy, Default)]
pub struct BoxedStorage;
unsafe impl<A, B> OwnedStorage<A, B> for BoxedStorage {
    #[inline]
    fn allocate_a(&mut self, value: A) -> *mut () {
        if mem::size_of::<A>() > 0 {
            let boxed: Box<Aligned<A>> = Box::new(([], value));
            let address = Box::into_raw(boxed);
            unsafe { &mut (*address).1 as *mut A as *mut () }
        } else {
            // Handle ZSTs specially, since `Box` "allocates" them at address
            // 1.
            2 as *mut ()
        }
    }

    #[inline]
    fn allocate_b(&mut self, value: B) -> *mut () {
        if mem::size_of::<B>() > 0 {
            let boxed: Box<Aligned<B>> = Box::new(([], value));
            let address = Box::into_raw(boxed);
            unsafe { &mut (*address).1 as *mut B as *mut () }
        } else {
            // Handle ZSTs specially, since `Box` "allocates" them at address
            // 1.
            2 as *mut ()
        }
    }

    #[inline]
    unsafe fn get_ptr_a<'a>(&'a self, ptr: *mut ()) -> &'a A {
        &(*(ptr as *const Aligned<A>)).1
    }

    #[inline]
    unsafe fn get_ptr_b<'a>(&'a self, ptr: *mut ()) -> &'a B {
        &(*(ptr as *const Aligned<B>)).1
    }

    #[inline]
    unsafe fn get_mut_a<'a>(&'a mut self, ptr: *mut ()) -> &'a mut A {
        &mut(*(ptr as *mut Aligned<A>)).1
    }

    #[inline]
    unsafe fn get_mut_b<'a>(&'a mut self, ptr: *mut ()) -> &'a mut B {
        &mut(*(ptr as *mut Aligned<B>)).1
    }

    #[inline]
    unsafe fn deallocate_a(&mut self, ptr: *mut ()) {
        if mem::size_of::<A>() > 0 {
            drop(Box::from_raw(ptr as *mut Aligned<A>))
        }
    }

    #[inline]
    unsafe fn deallocate_b(&mut self, ptr: *mut ()) {
        if mem::size_of::<B>() > 0 {
            drop(Box::from_raw(ptr as *mut B))
        }
    }

    #[inline]
    unsafe fn deallocate_into_a(&mut self, ptr: *mut ()) -> A {
        if mem::size_of::<A>() > 0 {
            let t = *Box::from_raw(ptr as *mut Aligned<A>);
            t.1
        } else {
            ptr::read(ptr as *mut A)
        }
    }

    #[inline]
    unsafe fn deallocate_into_b(&mut self, ptr: *mut ()) -> B {
        if mem::size_of::<B>() > 0 {
            let t = *Box::from_raw(ptr as *mut Aligned<B>);
            t.1
        } else {
            ptr::read(ptr as *mut B)
        }
    }

    #[inline]
    fn is_internal_storage() -> bool { false }
}

/// Optionally stores a pointer to a value.
///
/// It is doubtful that there are any types besides `()` and `*mut T` which
/// could implement this usefully.
pub unsafe trait PtrWrite<T : ?Sized> : Copy {
    /// Returns an instance of `Self` with no particular value.
    fn new() -> Self;

    /// Writes the given pointer into `self`.
    ///
    /// ## Unsafety
    ///
    /// The implementation must not inspect the given pointer. This call must
    /// not panic.
    fn store_ptr(&mut self, t: *const T);
}

unsafe impl<T : ?Sized> PtrWrite<T> for () {
    #[inline(always)]
    fn new() -> Self { () }

    #[inline(always)]
    fn store_ptr(&mut self, _: *const T) { }
}

unsafe impl<T : ?Sized> PtrWrite<T> for *const T {
    #[inline(always)]
    fn new() -> Self {
        unsafe { mem::uninitialized() }
    }

    #[inline(always)]
    fn store_ptr(&mut self, t: *const T) {
        *self = t;
    }
}

/// Read trait corresponding to `PtrWrite`.
pub unsafe trait PtrRead<T : ?Sized> : PtrWrite<T> {
    /// Returns the pointer most recently stored via `store_ptr()`.
    ///
    /// ## Unsafety
    ///
    /// Behaviour is undefined if the returned value is not *exactly* equal to
    /// the value passed in to the last call to `store_ptr()`. This call must
    /// not panic.
    fn get_ptr(&self) -> *const T;
}

unsafe impl<T : ?Sized> PtrRead<T> for *const T {
    #[inline(always)]
    fn get_ptr(&self) -> *const T {
        *self
    }
}

// This is completely unsafe for anything outside of `Ref` to use. It exists so
// that `Ref` doesn't need to have all the generics needed to refer to its
// parent directly, instead allowing anyone to just say `Ref<Supercow<...>>`.
//
// It does need to be public though since it's mentioned in type constraints
// and so forth.
#[allow(missing_docs)]
#[doc(hidden)]
pub trait RefParent {
    type Owned : ?Sized;

    /// Notifies `self` that a `Ref` has been dropped.
    ///
    /// ## Unsafety
    ///
    /// Behaviour is undefined if `self` is not in owned mode.
    ///
    /// Behaviour is undefined if a mutable reference to the owned value in
    /// `self` is still live.
    unsafe fn supercow_ref_drop(&mut self);
}