1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
//! This module contains utility functionality needed for this crate. Most
//! prominently, it contains the definition of the [USizeSet] used for storing
//! cell options for strategies.

use std::mem;
use std::ops::{
    BitAnd,
    BitAndAssign,
    BitOr,
    BitOrAssign,
    BitXor,
    BitXorAssign,
    Sub,
    SubAssign
};
use std::slice::Iter;

/// A set of `usize` that is implemented as a bit vector. Each `usize` that is
/// in the range of possible elements is represented by one bit in a vector of
/// numbers. This generally has better performance than a `HashSet`.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct USizeSet {
    min: usize,
    max: usize,
    len: usize,
    content: Vec<u64>
}

/// An enumeration of the errors that can happen when using a [USizeSet].
#[derive(Debug, Eq, PartialEq)]
pub enum USizeSetError {

    /// Indicates that the bounds provided in the constructor are invalid, that
    /// is, the minimum is greater than the maximum.
    InvalidBounds,

    /// Indicates that an operation was performed on two or more `USizeSet`s
    /// with different bounds.
    DifferentBounds,

    /// Indicates that a number that was queried to be inserted or removed is
    /// out of the bounds of the `USizeSet` in question.
    OutOfBounds
}

/// Syntactic sugar for `Result<V, USizeSetError>`.
pub type USizeSetResult<V> = Result<V, USizeSetError>;

struct BitIterator {
    bit_index: usize,
    value: u64
}

impl BitIterator {
    fn new(value: u64) -> BitIterator {
        BitIterator {
            bit_index: 0,
            value
        }
    }

    fn progress(&mut self) {
        let diff = self.value.trailing_zeros() as usize;
        self.value >>= diff;
        self.bit_index += diff;
    }
}

impl Iterator for BitIterator {
    type Item = usize;

    fn next(&mut self) -> Option<usize> {
        if self.value != 0 && (self.value & 1) == 0 {
            self.progress();
        }

        let result = if self.value == 0 { None } else { Some(self.bit_index) };
        self.value &= 0xfffffffffffffffe;
        result
    }
}

/// An iterator over the content of a [USizeSet].
pub struct USizeSetIter<'a> {
    offset: usize,
    current: BitIterator,
    content: Iter<'a, u64>
}

impl<'a> USizeSetIter<'a> {
    fn new(set: &'a USizeSet) -> USizeSetIter<'a> {
        let mut iter = set.content.iter();
        let first_bit_iterator = if let Some(&first) = iter.next() {
            BitIterator::new(first)
        }
        else {
            BitIterator::new(0)
        };

        USizeSetIter {
            offset: set.min,
            current: first_bit_iterator,
            content: iter
        }
    }
}

const USIZE_BIT_SIZE: usize = mem::size_of::<usize>() * 8;

impl<'a> Iterator for USizeSetIter<'a> {
    type Item = usize;

    fn next(&mut self) -> Option<usize> {
        loop {
            if let Some(bit_index) = self.current.next() {
                return Some(self.offset + bit_index);
            }

            if let Some(&next_content) = self.content.next() {
                self.current = BitIterator::new(next_content);
                self.offset += USIZE_BIT_SIZE;
            }
            else {
                return None;
            }
        }
    }
}

impl USizeSet {

    /// Creates a new, empty `USizeSet` with the given (inclusive) bounds.
    ///
    /// # Arguments
    ///
    /// * `min`: The minimum value that can be contained in the created set.
    /// Any values lower than that will yield a `USizeSetError::OutOfBounds` if
    /// inserted or removed. Must be less than or equal to `max`.
    /// * `max`: The maximum value that can be contained in the created set.
    /// Any values higher than that will yield a `USizeSetError::OutOfBounds`
    /// if inserted or removed. Must be greater than or equal to `min`.
    ///
    /// # Errors
    ///
    /// If `min > max`. In that case, a `USizeSetError::InvalidBounds` is
    /// returned.
    pub fn new(min: usize, max: usize) -> USizeSetResult<USizeSet> {
        if min > max {
            Err(USizeSetError::InvalidBounds)
        }
        else {
            let required_words = (max - min + 64) >> 6;

            Ok(USizeSet {
                min,
                max,
                len: 0,
                content: vec![0u64; required_words]
            })
        }
    }

    /// Creates a new singleton `USizeSet` with the given (inclusive) bounds.
    /// The set contains one element, which is specified by `content`.
    ///
    /// # Arguments
    ///
    /// * `min`: The minimum value that can be contained in the created set.
    /// Any values lower than that will yield a `USizeSetError::OutOfBounds` if
    /// inserted or removed. Must be less than or equal to `max`.
    /// * `max`: The maximum value that can be contained in the created set.
    /// Any values higher than that will yield a `USizeSetError::OutOfBounds`
    /// if inserted or removed. Must be greater than or equal to `min`.
    /// * `content`: The only element contained by the created set. Must be
    /// within the bounds.
    ///
    /// # Errors
    ///
    /// * `USizeSetError::InvalidBounds`: If `min > max`.
    /// * `USizeSetError::OutOfBounds`: If `content < min` or `content > max`.
    pub fn singleton(min: usize, max: usize, content: usize)
            -> USizeSetResult<USizeSet> {
        let mut result = USizeSet::new(min, max)?;
        result.insert(content)?;
        Ok(result)
    }

    /// Creates a new `USizeSet` that includes all numbers in the given
    /// (inclusive) bounds. Note that these bounds also apply later.
    ///
    /// # Arguments
    ///
    /// * `min`: The minimum value contained in the created set, which is also
    /// the minimum that can be contained. Any values lower than this will
    /// yield a `USizeSetError::OutOfBounds` if inserted or removed. Must be
    /// less than or equal to `max`.
    /// * `max`: The maximum value contained in the created set, which is also
    /// the maximum value that can be contained. Any values higher than this
    /// will yield a `USizeSetError::OutOfBounds` if inserted or removed. Must
    /// be greater than or equal to `min`.
    ///
    /// # Errors
    ///
    /// If `min > max`. In that case, a `USizeSetError::InvalidBounds` is
    /// returned.
    pub fn range(min: usize, max: usize) -> USizeSetResult<USizeSet> {
        if min > max {
            Err(USizeSetError::InvalidBounds)
        }
        else {
            let mut content = Vec::new();
            let ones = max - min + 1;
            let ones_words = ones >> 6;

            for _ in 1..ones_words {
                content.push(!0);
            }

            let remaining_ones = ones - (ones_words << 6);

            if remaining_ones > 0 {
                content.push((1 << remaining_ones) - 1);
            }

            Ok(USizeSet {
                min,
                max,
                len: ones,
                content
            })
        }
    }

    fn compute_index(&self, number: usize) -> USizeSetResult<(usize, u64)> {
        if number < self.min || number > self.max {
            Err(USizeSetError::OutOfBounds)
        }
        else {
            let index = number - self.min;
            let word_index = index >> 6;
            let sub_word_index = index & 63;
            let mask = 1u64 << sub_word_index;
            Ok((word_index, mask))
        }
    }

    /// Returns the minimum value that this set can contain (inclusive).
    pub fn min(&self) -> usize {
        self.min
    }

    /// Returns the maximum value that this set can contain (inclusive).
    pub fn max(&self) -> usize {
        self.max
    }

    /// Indicates whether this set contains the given number, in which case
    /// this method returns `true`. If it is not contained or outside the
    /// bounds, `false` will be returned.
    pub fn contains(&self, number: usize) -> bool {
        if let Ok((word_index, mask)) = self.compute_index(number) {
            (self.content[word_index] & mask) > 0
        }
        else {
            false
        }
    }

    /// Inserts the given number into this set, such that [USizeSet::contains]
    /// returns `true` for this number afterwards. Note that it must be within
    /// the bounds provided at construction time.
    ///
    /// This method returns `true` if the set has changed (i.e. the number was
    /// not present before) and `false` otherwise.
    ///
    /// # Errors
    ///
    /// If `number` is less than [USizeSet::min] or greater than
    /// [USizeSet::max]. In that case, `USizeSetError::OutOfBounds` is
    /// returned.
    pub fn insert(&mut self, number: usize) -> USizeSetResult<bool> {
        let (word_index, mask) = self.compute_index(number)?;
        let word = &mut self.content[word_index];

        if *word & mask == 0 {
            self.len += 1;
            *word |= mask;
            Ok(true)
        }
        else {
            Ok(false)
        }
    }

    /// Removes the given number from this set, such that [USizeSet::contains]
    /// returns `false` for this number afterwards. Note that it must be within
    /// the bounds provided at construction time.
    ///
    /// This method returns `true` if the set has changed (i.e. the number was
    /// present before) and `false` otherwise.
    ///
    /// # Errors
    ///
    /// If `number` is less than [USizeSet::min] or greater than
    /// [USizeSet::max]. In that case, `USizeSetError::OutOfBounds` is
    /// returned.
    pub fn remove(&mut self, number: usize) -> USizeSetResult<bool> {
        let (word_index, mask) = self.compute_index(number)?;
        let word = &mut self.content[word_index];

        if *word & mask > 0 {
            *word &= !mask;
            self.len -= 1;
            Ok(true)
        }
        else {
            Ok(false)
        }
    }

    /// Removes all numbers from this set, such that [USizeSet::contains] will
    /// return `false` for all inputs and [USizeSet::is_empty] will return
    /// `true`.
    pub fn clear(&mut self) {
        for i in 0..self.content.len() {
            self.content[i] = 0;
        }

        self.len = 0;
    }

    /// Returns an iterator over the numbers contained in this set in ascending
    /// order.
    pub fn iter(&self) -> USizeSetIter<'_> {
        USizeSetIter::new(self)
    }

    /// Indicates whether this set is empty, i.e. contains no numbers. If this
    /// method returns `true`, [USizeSet::contains] will return `false` for all
    /// inputs.
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Returns the number of elements contained in this set.
    pub fn len(&self) -> usize {
        self.len
    }

    fn count(&self) -> usize {
        self.content.iter()
            .map(|c| c.count_ones() as usize)
            .sum()
    }

    fn op_assign(&mut self, other: &USizeSet, op: impl Fn(u64, u64) -> u64)
            -> USizeSetResult<bool> {
        if self.min() != other.min() || self.max() != other.max() {
            Err(USizeSetError::DifferentBounds)
        }
        else {
            let contents = self.content.iter_mut().zip(other.content.iter());
            let mut changed = false;

            for (self_u64, &other_u64) in contents {
                let self_before = *self_u64;
                *self_u64 = op(self_before, other_u64);
                changed |= self_before != *self_u64;
            }

            self.len = self.count();
            Ok(changed)
        }
    }

    fn op(&self, other: &USizeSet,
            op_assign: impl Fn(&mut USizeSet, &USizeSet) -> USizeSetResult<bool>)
            -> USizeSetResult<USizeSet> {
        let mut clone = self.clone();
        op_assign(&mut clone, other)?;
        Ok(clone)
    }

    /// Computes the set union between this and the given set and stores the
    /// result in this set. The bounds of this set and `other` must be equal.
    ///
    /// `USizeSet` implements [BitOrAssign] as syntactic sugar for this
    /// operation. Note that that implementation panics instead of returning
    /// potential errors.
    ///
    /// # Returns
    ///
    /// True, if and only if this set changed as a result of the operation.
    ///
    /// # Errors
    ///
    /// If either the minimum or maximum of this set and `other` are different.
    /// In that case, `USizeError::DifferentBounds` is returned.
    pub fn union_assign(&mut self, other: &USizeSet) -> USizeSetResult<bool> {
        self.op_assign(other, u64::bitor)
    }

    /// Computes the set union between this and the given set and stores the
    /// result in a new set which is returned. The bounds of this set and
    /// `other` must be equal.
    ///
    /// `USizeSet` implements [BitOr] as syntactic sugar for this operation.
    /// Note that that implementation  panics instead of returning potential
    /// errors.
    ///
    /// # Errors
    ///
    /// If the minimum or maximum of this set and `other` are different. In
    /// that case, `USizeError::DifferentBounds` is returned.
    pub fn union(&self, other: &USizeSet) -> USizeSetResult<USizeSet> {
        self.op(other, USizeSet::union_assign)
    }

    /// Computes the set intersection between this and the given set and stores
    /// the result in this set. The bounds of this set and `other` must be
    /// equal.
    ///
    /// `USizeSet` implements [BitAndAssign] as syntactic sugar for this
    /// operation. Note that that implementation panics instead of returning
    /// potential errors.
    ///
    /// # Returns
    ///
    /// True, if and only if this set changed as a result of the operation.
    ///
    /// # Errors
    ///
    /// If the minimum or maximum of this set and `other` are different. In
    /// that case, `USizeError::DifferentBounds` is returned.
    pub fn intersect_assign(&mut self, other: &USizeSet)
            -> USizeSetResult<bool> {
        self.op_assign(other, u64::bitand)
    }

    /// Computes the set intersection between this and the given set and stores
    /// the result in a new set which is returned. The bounds of this set and
    /// `other` must be equal.
    ///
    /// `USizeSet` implements [BitAnd] as syntactic sugar for this operation.
    /// Note that that implementation panics instead of returning potential
    /// errors.
    ///
    /// # Errors
    ///
    /// If the minimum or maximum of this set and `other` are different. In
    /// that case, `USizeError::DifferentBounds` is returned.
    pub fn intersect(&self, other: &USizeSet) -> USizeSetResult<USizeSet> {
        self.op(other, USizeSet::intersect_assign)
    }

    /// Computes the set difference between this and the given set and stores
    /// the result in this set. The bounds of this set and `other` must be
    /// equal. `other` acts as the right-hand-side, meaning its elements are
    /// removed from the result.
    ///
    /// `USizeSet` implements [SubAssign] as syntactic sugar for this
    /// operation. Note that that implementation panics instead of returning
    /// potential errors.
    ///
    /// # Returns
    ///
    /// True, if and only if this set changed as a result of the operation.
    ///
    /// # Errors
    ///
    /// If the minimum or maximum of this set and `other` are different. In
    /// that case, `USizeError::DifferentBounds` is returned.
    pub fn difference_assign(&mut self, other: &USizeSet)
            -> USizeSetResult<bool> {
        self.op_assign(other, |a, b| a & !b)
    }

    /// Computes the set difference between this and the given set and stores
    /// the result in a new set which is returned. The bounds of this set and
    /// `other` must be equal.
    ///
    /// `USizeSet` implements [Sub] as syntactic sugar for this operation. Note
    /// that that implementation panics instead of returning potential errors.
    ///
    /// # Errors
    ///
    /// If the minimum or maximum of this set and `other` are different. In
    /// that case, `USizeError::DifferentBounds` is returned.
    pub fn difference(&self, other: &USizeSet) -> USizeSetResult<USizeSet> {
        self.op(other, USizeSet::difference_assign)
    }

    /// Computes the symmetric set difference between this and the given set
    /// and stores the result in this set. The bounds of this set and `other`
    /// must be equal.
    ///
    /// `USizeSet` implements [BitXorAssign] as syntactic sugar for this
    /// operation. Note that that implementation panics instead of returning
    /// potential errors.
    ///
    /// # Returns
    ///
    /// True, if and only if this set changed as a result of the operation.
    ///
    /// # Errors
    ///
    /// If the minimum or maximum of this set and `other` are different. In
    /// that case, `USizeError::DifferentBounds` is returned.
    pub fn symmetric_difference_assign(&mut self, other: &USizeSet)
            -> USizeSetResult<bool> {
        self.op_assign(other, u64::bitxor)
    }

    /// Computes the symmetric set difference between this and the given set
    /// and stores the result in a new set which is returned. The bounds of
    /// this set and `other` must be equal.
    ///
    /// `USizeSet` implements [BitXor] as syntactic sugar for this operation.
    /// Note that that implementation panics instead of returning potential
    /// errors.
    ///
    /// # Errors
    ///
    /// If the minimum or maximum of this set and `other` are different. In
    /// that case, `USizeError::DifferentBounds` is returned.
    pub fn symmetric_difference(&self, other: &USizeSet)
            -> USizeSetResult<USizeSet> {
        self.op(other, USizeSet::symmetric_difference_assign)
    }
}

/// Creates a new [USizeSet] that contains the specified elements. First, the
/// minimum and maximum values must be specified. Then, after a semicolon, a
/// comma-separated list of the contained values must be provided. For empty
/// sets, [USizeSet.new()] can be used.
///
/// An example usage of this macro looks as follows:
///
/// ```
/// use sudoku_variants::set;
/// use sudoku_variants::util::USizeSet;
///
/// let set = set!(1, 5; 2, 4);
/// assert_eq!(1, set.min());
/// assert_eq!(5, set.max());
/// assert!(set.contains(2));
/// assert!(!set.contains(3));
/// ```
#[macro_export]
macro_rules! set {
    ($set:expr; $e:expr) => {
        ($set).insert($e).unwrap()
    };

    ($set:expr; $e:expr, $($es:expr),+) => {
        set!($set; $e);
        set!($set; $($es),+)
    };

    ($min:expr, $max:expr; $($es:expr),+) => {
        {
            let mut set = USizeSet::new($min, $max).unwrap();
            set!(set; $($es),+);
            set
        }
    };
}

impl BitAnd<&USizeSet> for USizeSet {
    type Output = USizeSet;

    fn bitand(mut self, rhs: &USizeSet) -> USizeSet {
        self.intersect_assign(rhs).unwrap();
        self
    }
}

impl BitOr<&USizeSet> for USizeSet {
    type Output = USizeSet;

    fn bitor(mut self, rhs: &USizeSet) -> USizeSet {
        self.union_assign(rhs).unwrap();
        self
    }
}

impl Sub<&USizeSet> for USizeSet {
    type Output = USizeSet;

    fn sub(mut self, rhs: &USizeSet) -> USizeSet {
        self.difference_assign(rhs).unwrap();
        self
    }
}

impl BitXor<&USizeSet> for USizeSet {
    type Output = USizeSet;

    fn bitxor(mut self, rhs: &USizeSet) -> USizeSet {
        self.symmetric_difference_assign(rhs).unwrap();
        self
    }
}

impl BitAnd for &USizeSet {
    type Output = USizeSet;

    fn bitand(self, rhs: &USizeSet) -> USizeSet {
        self.intersect(rhs).unwrap()
    }
}

impl BitOr for &USizeSet {
    type Output = USizeSet;

    fn bitor(self, rhs: &USizeSet) -> USizeSet {
        self.union(rhs).unwrap()
    }
}

impl Sub for &USizeSet {
    type Output = USizeSet;

    fn sub(self, rhs: &USizeSet) -> USizeSet {
        self.difference(rhs).unwrap()
    }
}

impl BitXor for &USizeSet {
    type Output = USizeSet;

    fn bitxor(self, rhs: &USizeSet) -> USizeSet {
        self.symmetric_difference(rhs).unwrap()
    }
}

impl BitAndAssign<&USizeSet> for USizeSet {
    fn bitand_assign(&mut self, rhs: &USizeSet) {
        self.intersect_assign(rhs).unwrap();
    }
}

impl BitOrAssign<&USizeSet> for USizeSet {
    fn bitor_assign(&mut self, rhs: &USizeSet) {
        self.union_assign(rhs).unwrap();
    }
}

impl SubAssign<&USizeSet> for USizeSet {
    fn sub_assign(&mut self, rhs: &USizeSet) {
        self.difference_assign(rhs).unwrap();
    }
}

impl BitXorAssign<&USizeSet> for USizeSet {
    fn bitxor_assign(&mut self, rhs: &USizeSet) {
        self.symmetric_difference_assign(rhs).unwrap();
    }
}

impl BitAndAssign<&USizeSet> for &mut USizeSet {
    fn bitand_assign(&mut self, rhs: &USizeSet) {
        self.intersect_assign(rhs).unwrap();
    }
}

impl BitOrAssign<&USizeSet> for &mut USizeSet {
    fn bitor_assign(&mut self, rhs: &USizeSet) {
        self.union_assign(rhs).unwrap();
    }
}

impl SubAssign<&USizeSet> for &mut USizeSet {
    fn sub_assign(&mut self, rhs: &USizeSet) {
        self.difference_assign(rhs).unwrap();
    }
}

impl BitXorAssign<&USizeSet> for &mut USizeSet {
    fn bitxor_assign(&mut self, rhs: &USizeSet) {
        self.symmetric_difference_assign(rhs).unwrap();
    }
}

#[cfg(test)]
mod tests {

    use super::*;

    #[test]
    fn new_set_is_empty() {
        let set = USizeSet::new(1, 9).unwrap();
        assert!(set.is_empty());
        assert!(!set.contains(1));
        assert!(!set.contains(3));
        assert!(!set.contains(9));
        assert_eq!(0, set.len());
    }

    #[test]
    fn range_set_is_full() {
        let set = USizeSet::range(1, 9).unwrap();
        assert!(!set.is_empty());
        assert!(set.contains(1));
        assert!(set.contains(3));
        assert!(set.contains(9));
        assert_eq!(9, set.len());
    }

    #[test]
    fn singleton_set_contains_only_given_element() {
        let set = USizeSet::singleton(1, 9, 3).unwrap();
        assert!(!set.is_empty());
        assert!(!set.contains(1));
        assert!(set.contains(3));
        assert!(!set.contains(9));
        assert_eq!(1, set.len());
    }

    #[test]
    fn set_macro_has_specified_range() {
        let set = set!(2, 5; 3);
        assert_eq!(2, set.min());
        assert_eq!(5, set.max());
    }

    #[test]
    fn set_macro_contains_specified_elements() {
        let set = set!(2, 8; 3, 7, 8);
        assert_eq!(3, set.len());
        assert!(set.contains(3));
        assert!(set.contains(7));
        assert!(set.contains(8));
        assert!(!set.contains(5));
    }

    #[test]
    fn set_creation_error() {
        assert_eq!(Err(USizeSetError::InvalidBounds), USizeSet::new(1, 0));
        assert_eq!(Err(USizeSetError::InvalidBounds), USizeSet::new(5, 3));
    }

    #[test]
    fn set_insertion_error() {
        let mut set = USizeSet::new(1, 5).unwrap();
        assert_eq!(Err(USizeSetError::OutOfBounds), set.insert(0));
        assert_eq!(Err(USizeSetError::OutOfBounds), set.insert(6));
    }

    #[test]
    fn set_operation_error() {
        let set_1 = USizeSet::new(1, 9).unwrap();
        let set_2 = USizeSet::new(1, 6).unwrap();
        assert_eq!(Err(USizeSetError::DifferentBounds), set_1.union(&set_2));
        assert_eq!(Err(USizeSetError::DifferentBounds),
            set_2.intersect(&set_1));
    }

    #[test]
    fn manipulation() {
        let mut set = USizeSet::new(1, 9).unwrap();
        set.insert(2).unwrap();
        set.insert(4).unwrap();
        set.insert(6).unwrap();

        assert!(!set.is_empty());
        assert!(set.contains(2));
        assert!(set.contains(4));
        assert!(set.contains(6));
        assert_eq!(3, set.len());

        set.remove(4).unwrap();

        assert!(!set.is_empty());
        assert!(set.contains(2));
        assert!(!set.contains(4));
        assert!(set.contains(6));
        assert_eq!(2, set.len());

        set.clear();

        assert!(set.is_empty());
        assert!(!set.contains(2));
        assert!(!set.contains(4));
        assert!(!set.contains(6));
        assert_eq!(0, set.len());
    }

    #[test]
    fn iteration() {
        let mut set = USizeSet::new(1, 100).unwrap();
        set.insert(1).unwrap();
        set.insert(12).unwrap();
        set.insert(23).unwrap();
        set.insert(36).unwrap();
        set.insert(42).unwrap();
        set.insert(64).unwrap();
        set.insert(65).unwrap();
        set.insert(97).unwrap();
        set.insert(100).unwrap();

        let mut iter = set.iter();

        assert_eq!(Some(1), iter.next());
        assert_eq!(Some(12), iter.next());
        assert_eq!(Some(23), iter.next());
        assert_eq!(Some(36), iter.next());
        assert_eq!(Some(42), iter.next());
        assert_eq!(Some(64), iter.next());
        assert_eq!(Some(65), iter.next());
        assert_eq!(Some(97), iter.next());
        assert_eq!(Some(100), iter.next());
        assert_eq!(None, iter.next());
    }

    #[test]
    fn double_insert() {
        let mut set = USizeSet::new(1, 9).unwrap();
        assert!(set.insert(3).unwrap());
        assert!(set.insert(4).unwrap());
        assert!(!set.insert(3).unwrap());

        assert!(set.contains(3));
        assert_eq!(2, set.len());
    }

    #[test]
    fn double_remove() {
        let mut set = USizeSet::range(1, 9).unwrap();
        assert!(set.remove(3).unwrap());
        assert!(set.remove(5).unwrap());
        assert!(!set.remove(3).unwrap());

        assert!(!set.contains(3));
        assert_eq!(7, set.len());
    }

    fn op_test_lhs() -> USizeSet {
        set!(1, 4; 2, 4)
    }

    fn op_test_rhs() -> USizeSet {
        set!(1, 4; 3, 4)
    }

    #[test]
    fn union() {
        let result = op_test_lhs() | &op_test_rhs();
        let expected = set!(1, 4; 2, 3, 4);
        assert_eq!(expected, result);
    }

    #[test]
    fn intersection() {
        let result = op_test_lhs() & &op_test_rhs();
        let expected = set!(1, 4; 4);
        assert_eq!(expected, result);
    }

    #[test]
    fn difference() {
        let result = op_test_lhs() - &op_test_rhs();
        let expected = set!(1, 4; 2);
        assert_eq!(expected, result);
    }

    #[test]
    fn symmetric_difference() {
        let result = op_test_lhs() ^ &op_test_rhs();
        let expected = set!(1, 4; 2, 3);
        assert_eq!(expected, result);
    }
}