1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
//! Compressed integer sequence using Directly Addressable Codes (DACs) in a simple bytewise scheme.
#![cfg(target_pointer_width = "64")]

use std::convert::TryFrom;
use std::io::{Read, Write};

use anyhow::{anyhow, Result};
use num_traits::ToPrimitive;

use crate::bit_vectors::{self, BitVector, Rank, Rank9Sel};
use crate::int_vectors::{Access, Build, NumVals};
use crate::utils;
use crate::Serializable;

const LEVEL_WIDTH: usize = 8;
const LEVEL_MASK: usize = (1 << LEVEL_WIDTH) - 1;

/// Compressed integer sequence using Directly Addressable Codes (DACs) in a simple bytewise scheme.
///
/// DACs are a compact representation of an integer sequence consisting of many small values.
/// [`DacsByte`] is a simple variant and uses [`Vec<u8>`] for each level to obtain faster
/// operations than [`DacsOpt`](super::DacsOpt).
///
/// # Memory complexity
///
/// $`\textrm{DAC}(A) + o(\textrm{DAC}(A)/b) + O(\lg u)`$ bits where
///
/// - $`u`$ is the maximum value plus 1,
/// - $`b`$ is the length in bits assigned for each level with DACs (here $`b = 8`$), and
/// - $`\textrm{DAC}(A)`$ is the length in bits of the encoded sequence from an original sequence $`A`$ with DACs.
///
/// # Examples
///
/// ```
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use sucds::int_vectors::{DacsByte, Access};
///
/// let seq = DacsByte::from_slice(&[5, 0, 100000, 334])?;
///
/// assert_eq!(seq.access(0), Some(5));
/// assert_eq!(seq.access(1), Some(0));
/// assert_eq!(seq.access(2), Some(100000));
/// assert_eq!(seq.access(3), Some(334));
///
/// assert_eq!(seq.len(), 4);
/// assert_eq!(seq.num_levels(), 3);
/// # Ok(())
/// # }
/// ```
///
/// # References
///
/// - N. R. Brisaboa, S. Ladra, and G. Navarro, "DACs: Bringing direct access to variable-length
///   codes." Information Processing & Management, 49(1), 392-404, 2013.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct DacsByte {
    data: Vec<Vec<u8>>,
    flags: Vec<Rank9Sel>,
}

impl DacsByte {
    /// Builds DACs by assigning 8 bits to represent each level.
    ///
    /// # Arguments
    ///
    /// - `vals`: Slice of integers to be stored.
    ///
    /// # Errors
    ///
    /// An error is returned if `vals` contains an integer that cannot be cast to [`usize`].
    pub fn from_slice<T>(vals: &[T]) -> Result<Self>
    where
        T: ToPrimitive,
    {
        if vals.is_empty() {
            return Ok(Self::default());
        }

        let mut maxv = 0;
        for x in vals {
            maxv =
                maxv.max(x.to_usize().ok_or_else(|| {
                    anyhow!("vals must consist only of values castable into usize.")
                })?);
        }
        let num_bits = utils::needed_bits(maxv);
        let num_levels = utils::ceiled_divide(num_bits, LEVEL_WIDTH);
        assert_ne!(num_levels, 0);

        if num_levels == 1 {
            let data: Vec<_> = vals
                .iter()
                .map(|x| u8::try_from(x.to_usize().unwrap()).unwrap())
                .collect();
            return Ok(Self {
                data: vec![data],
                flags: vec![],
            });
        }

        let mut data = vec![vec![]; num_levels];
        let mut flags = vec![BitVector::default(); num_levels - 1];

        for x in vals {
            let mut x = x.to_usize().unwrap();
            for j in 0..num_levels {
                data[j].push(u8::try_from(x & LEVEL_MASK).unwrap());
                x >>= LEVEL_WIDTH;
                if j == num_levels - 1 {
                    assert_eq!(x, 0);
                    break;
                } else if x == 0 {
                    flags[j].push_bit(false);
                    break;
                }
                flags[j].push_bit(true);
            }
        }

        let flags = flags.into_iter().map(Rank9Sel::new).collect();
        Ok(Self { data, flags })
    }

    /// Creates an iterator for enumerating integers.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// use sucds::int_vectors::DacsByte;
    ///
    /// let seq = DacsByte::from_slice(&[5, 0, 100000, 334])?;
    /// let mut it = seq.iter();
    ///
    /// assert_eq!(it.next(), Some(5));
    /// assert_eq!(it.next(), Some(0));
    /// assert_eq!(it.next(), Some(100000));
    /// assert_eq!(it.next(), Some(334));
    /// assert_eq!(it.next(), None);
    /// # Ok(())
    /// # }
    /// ```
    pub const fn iter(&self) -> Iter {
        Iter::new(self)
    }

    /// Gets the number of integers.
    #[inline(always)]
    pub fn len(&self) -> usize {
        self.data[0].len()
    }

    /// Checks if the vector is empty.
    #[inline(always)]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Gets the number of levels.
    #[inline(always)]
    pub fn num_levels(&self) -> usize {
        self.data.len()
    }

    /// Gets the number of bits for each level.
    #[inline(always)]
    pub fn widths(&self) -> Vec<usize> {
        self.data.iter().map(|_| LEVEL_WIDTH).collect()
    }
}

impl Default for DacsByte {
    fn default() -> Self {
        Self {
            // Needs a single level at least.
            data: vec![vec![]],
            flags: vec![],
        }
    }
}

impl Build for DacsByte {
    /// Creates a new vector from a slice of integers `vals`.
    ///
    /// This just calls [`Self::from_slice()`]. See the documentation.
    fn build_from_slice<T>(vals: &[T]) -> Result<Self>
    where
        T: ToPrimitive,
        Self: Sized,
    {
        Self::from_slice(vals)
    }
}

impl NumVals for DacsByte {
    /// Returns the number of integers stored (just wrapping [`Self::len()`]).
    fn num_vals(&self) -> usize {
        self.len()
    }
}

impl Access for DacsByte {
    /// Returns the `pos`-th integer, or [`None`] if out of bounds.
    ///
    /// # Complexity
    ///
    /// $`O( \ell_{pos} )`$ where $`\ell_{pos}`$ is the number of levels corresponding to
    /// the `pos`-th integer.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// use sucds::int_vectors::{DacsByte, Access};
    ///
    /// let seq = DacsByte::from_slice(&[5, 999, 334])?;
    ///
    /// assert_eq!(seq.access(0), Some(5));
    /// assert_eq!(seq.access(1), Some(999));
    /// assert_eq!(seq.access(2), Some(334));
    /// assert_eq!(seq.access(3), None);
    /// # Ok(())
    /// # }
    /// ```
    fn access(&self, mut pos: usize) -> Option<usize> {
        if self.len() <= pos {
            return None;
        }
        let mut x = 0;
        for j in 0..self.num_levels() {
            x |= usize::from(self.data[j][pos]) << (j * LEVEL_WIDTH);
            if j == self.num_levels() - 1
                || !bit_vectors::Access::access(&self.flags[j], pos).unwrap()
            {
                break;
            }
            pos = self.flags[j].rank1(pos).unwrap();
        }
        Some(x)
    }
}

/// Iterator for enumerating integers, created by [`DacsByte::iter()`].
pub struct Iter<'a> {
    seq: &'a DacsByte,
    pos: usize,
}

impl<'a> Iter<'a> {
    /// Creates a new iterator.
    pub const fn new(seq: &'a DacsByte) -> Self {
        Self { seq, pos: 0 }
    }
}

impl<'a> Iterator for Iter<'a> {
    type Item = usize;

    #[inline(always)]
    fn next(&mut self) -> Option<Self::Item> {
        if self.pos < self.seq.len() {
            let x = self.seq.access(self.pos).unwrap();
            self.pos += 1;
            Some(x)
        } else {
            None
        }
    }

    #[inline(always)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.seq.len(), Some(self.seq.len()))
    }
}

impl Serializable for DacsByte {
    fn serialize_into<W: Write>(&self, mut writer: W) -> Result<usize> {
        let mut mem = 0;
        mem += self.data.serialize_into(&mut writer)?;
        mem += self.flags.serialize_into(&mut writer)?;
        Ok(mem)
    }

    fn deserialize_from<R: Read>(mut reader: R) -> Result<Self> {
        let data = Vec::<Vec<u8>>::deserialize_from(&mut reader)?;
        let flags = Vec::<Rank9Sel>::deserialize_from(&mut reader)?;
        Ok(Self { data, flags })
    }

    fn size_in_bytes(&self) -> usize {
        self.data.size_in_bytes() + self.flags.size_in_bytes()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_basic() {
        let seq = DacsByte::from_slice(&[0xFFFF, 0xFF, 0xF, 0xFFFFF, 0xF]).unwrap();

        assert_eq!(
            seq.data,
            vec![
                vec![0xFF, 0xFF, 0xF, 0xFF, 0xF],
                vec![0xFF, 0xFF],
                vec![0xF]
            ]
        );

        assert_eq!(
            seq.flags,
            vec![
                Rank9Sel::from_bits([true, false, false, true, false]),
                Rank9Sel::from_bits([false, true])
            ]
        );

        assert!(!seq.is_empty());
        assert_eq!(seq.len(), 5);
        assert_eq!(seq.num_levels(), 3);
        assert_eq!(seq.widths(), vec![LEVEL_WIDTH, LEVEL_WIDTH, LEVEL_WIDTH]);

        assert_eq!(seq.access(0), Some(0xFFFF));
        assert_eq!(seq.access(1), Some(0xFF));
        assert_eq!(seq.access(2), Some(0xF));
        assert_eq!(seq.access(3), Some(0xFFFFF));
        assert_eq!(seq.access(4), Some(0xF));
    }

    #[test]
    fn test_empty() {
        let seq = DacsByte::from_slice::<usize>(&[]).unwrap();
        assert!(seq.is_empty());
        assert_eq!(seq.len(), 0);
        assert_eq!(seq.num_levels(), 1);
        assert_eq!(seq.widths(), vec![LEVEL_WIDTH]);
    }

    #[test]
    fn test_all_zeros() {
        let seq = DacsByte::from_slice(&[0, 0, 0, 0]).unwrap();
        assert!(!seq.is_empty());
        assert_eq!(seq.len(), 4);
        assert_eq!(seq.num_levels(), 1);
        assert_eq!(seq.widths(), vec![LEVEL_WIDTH]);
        assert_eq!(seq.access(0), Some(0));
        assert_eq!(seq.access(1), Some(0));
        assert_eq!(seq.access(2), Some(0));
        assert_eq!(seq.access(3), Some(0));
    }

    #[test]
    fn test_from_slice_uncastable() {
        let e = DacsByte::from_slice(&[u128::MAX]);
        assert_eq!(
            e.err().map(|x| x.to_string()),
            Some("vals must consist only of values castable into usize.".to_string())
        );
    }

    #[test]
    fn test_serialize() {
        let mut bytes = vec![];
        let seq = DacsByte::from_slice(&[0xFFFFF, 0xFF, 0xF, 0xFFFFF, 0xF]).unwrap();
        let size = seq.serialize_into(&mut bytes).unwrap();
        let other = DacsByte::deserialize_from(&bytes[..]).unwrap();
        assert_eq!(seq, other);
        assert_eq!(size, bytes.len());
        assert_eq!(size, seq.size_in_bytes());
    }
}