1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
use num_traits::ToPrimitive;

use bit_vec::BitVec;
use rank::{RankSupport, BitRankSupport};
use space_usage::SpaceUsage;
use storage::BlockType;

/// Vigna’s rank structure for fast rank queries over a `BitVec`.
#[derive(Clone, Debug)]
pub struct Rank9<Store> {
    bit_store: Store,
    counts: Vec<Rank9Cell>,
}

#[repr(C)]
#[derive(Clone, Copy, Debug)]
struct Rank9Cell {
    level1: u64,
    level2: Level2,
}

#[repr(C)]
#[derive(Clone, Copy, Debug)]
struct Level2(u64);

impl Level2 {
    fn new() -> Self { Level2(0) }

    fn get(&self, t: usize) -> u64 {
        debug_assert!(t < 8);

        let t = t.wrapping_sub(1);
        let shift = t.wrapping_add(t >> 60 & 8) * 9;
        self.0 >> shift & 0x1FF
    }

    fn set(&mut self, t: usize, value: u64) {
        debug_assert!(t < 8);

        let t = t.wrapping_sub(1);
        let shift = t.wrapping_add(t >> 60 & 8) * 9;

        let old_part = self.0 & !(0x1FF << shift);
        let new_part = (value & 0x1FF) << shift;

        self.0 = old_part | new_part;
    }
}

impl<Store: BitVec<Block = u64>> Rank9<Store> {
    /// Creates a new rank9 structure.
    pub fn new(bits: Store) -> Self {
        let bb_count = bits.block_len().ceil_div(8);
        let mut result = Vec::with_capacity(bb_count + 1);

        let mut level1_count = 0;
        let mut level2_count = 0;

        // Scope for store_counts's borrow of result
        {
            let mut store_counts = |i: usize,
                                    level1_count: &mut u64,
                                    level2_count: &mut u64| {
                let basic_block_index = i / 8;
                let word_offset       = i % 8;

                if word_offset == 0 {
                    result.push(Rank9Cell {
                        level1: *level1_count,
                        level2: Level2::new(),
                    });
                    *level2_count = 0;
                } else {
                    result[basic_block_index].level2
                            .set(word_offset, *level2_count);
                }
            };

            for i in 0..bits.block_len() {
                store_counts(i, &mut level1_count, &mut level2_count);

                let word_count = bits.get_block(i).count_ones() as u64;
                level1_count += word_count;
                level2_count += word_count;
            }

            store_counts(bits.block_len(),
                         &mut level1_count, &mut level2_count);
        }

        Rank9 {
            bit_store: bits,
            counts: result,
        }
    }

    /// Borrows a reference to the underlying bit store.
    pub fn inner(&self) -> &Store {
        &self.bit_store
    }

    /// Returns the underlying bit store.
    pub fn into_inner(self) -> Store {
        self.bit_store
    }
}

impl<Store: BitVec<Block = u64>> BitRankSupport for Rank9<Store> {
    fn rank1(&self, position: u64) -> u64 {
        let bb_index = (position / 512).to_usize()
                                       .expect("Rank9::rank1: index overflow");
        let word_index = (position / 64).to_usize()
                                        .expect("Rank9::rank1: index overflow");
        let word_offset = word_index % 8;
        let bit_offset = position % 64;

        let cell = self.counts[bb_index];

        let bb_portion = cell.level1;
        let word_portion = cell.level2.get(word_offset);
        let bit_portion = self.bit_store.get_block(word_index)
                                        .rank1(bit_offset);

        bb_portion + word_portion + bit_portion
    }
}

impl<Store: BitVec<Block = u64>> RankSupport for Rank9<Store> {
    type Over = bool;

    fn rank(&self, position: u64, value: bool) -> u64 {
        if value {self.rank1(position)} else {self.rank0(position)}
    }

    fn limit(&self) -> u64 {
        self.bit_store.bit_len()
    }
}

impl<Store: BitVec<Block = u64>> BitVec for Rank9<Store> {
    impl_bit_vec_adapter!(u64, bit_store);
}

impl_stack_only_space_usage!(Rank9Cell);
impl_stack_only_space_usage!(Level2);

impl<Store: SpaceUsage> SpaceUsage for Rank9<Store> {
    fn is_stack_only() -> bool { false }

    fn heap_bytes(&self) -> usize {
        self.bit_store.heap_bytes() + self.counts.heap_bytes()
    }
}

#[test]
fn level2() {
    let mut l2 =
        Level2(0b0_110010000_000000000_000000001_000001110_000001000_100000000_000000101);

    assert_eq!(0, l2.get(0));
    assert_eq!(5, l2.get(1));
    assert_eq!(256, l2.get(2));
    assert_eq!(8, l2.get(3));
    assert_eq!(14, l2.get(4));
    assert_eq!(1, l2.get(5));
    assert_eq!(0, l2.get(6));
    assert_eq!(400, l2.get(7));

    l2.set(3, 45);

    assert_eq!(0, l2.get(0));
    assert_eq!(5, l2.get(1));
    assert_eq!(256, l2.get(2));
    assert_eq!(45, l2.get(3));
    assert_eq!(14, l2.get(4));
    assert_eq!(1, l2.get(5));
    assert_eq!(0, l2.get(6));
    assert_eq!(400, l2.get(7));

    l2.set(7, 511);

    assert_eq!(0, l2.get(0));
    assert_eq!(5, l2.get(1));
    assert_eq!(256, l2.get(2));
    assert_eq!(45, l2.get(3));
    assert_eq!(14, l2.get(4));
    assert_eq!(1, l2.get(5));
    assert_eq!(0, l2.get(6));
    assert_eq!(511, l2.get(7));
}

#[cfg(test)]
mod test {
    use super::*;
    use rank::BitRankSupport;

    #[test]
    fn rank1() {
        let vec = vec![ 0b00000000000001110000000000000001u64; 1024 ];
        let rank = Rank9::new(vec);

        assert_eq!(1, rank.rank1(0));
        assert_eq!(1, rank.rank1(1));
        assert_eq!(1, rank.rank1(2));
        assert_eq!(1, rank.rank1(7));
        assert_eq!(2, rank.rank1(16));
        assert_eq!(3, rank.rank1(17));
        assert_eq!(4, rank.rank1(18));
        assert_eq!(4, rank.rank1(19));
        assert_eq!(4, rank.rank1(20));

        assert_eq!(16, rank.rank1(4 * 64 - 1));
        assert_eq!(17, rank.rank1(4 * 64));
        assert_eq!(2048, rank.rank1(512 * 64 - 1));
        assert_eq!(2049, rank.rank1(512 * 64));

        assert_eq!(4096, rank.rank1(1024 * 64 - 1));
    }

    // This test is a sanity check that we aren’t taking up too much
    // space with the metadata.
    #[test]
    fn space() {
        use space_usage::*;

        for i in 0 .. 50 {
            let vec = vec![ 0u64; 1000 + i ];
            let vec_bytes = vec.total_bytes() as f64;
            let rank = Rank9::new(vec);

            assert!(rank.total_bytes() as f64 / vec_bytes < 1.3);
        }
    }
}