1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#![no_std]

extern crate byteorder;
extern crate bitflags;
extern crate embedded_hal as hal;

use byteorder::{ByteOrder, LittleEndian};
use hal::blocking::i2c;

pub mod pdo;
pub mod rdo;
pub mod registers;

use pdo::*;
use rdo::*;
use registers::*;

pub const STUSB4500_ADDR: u8 = 0x28;

/// Address enum for STUSB4500
pub enum Address {
    /// Default address with all address pins tied low
    Default,
    /// Address determined by A1 and A0 pins. True = tied high, low = tied low.
    Strap(bool, bool),
    /// Custom address from config file etc
    Custom(u8)
}

impl Address {
    pub(crate) fn addr(&self) -> u8 {
        match self {
            Address::Default => STUSB4500_ADDR,
            Address::Strap(a1, a0) => STUSB4500_ADDR | (*a1 as u8) << 1 | (*a0 as u8) << 0,
            Address::Custom(addr) => *addr,
        }
    }
}

impl Default for Address {
    fn default() -> Self {
        Address::Default
    }
}

#[derive(Debug)]
pub enum Error<I2C> {
    I2CError(I2C),
    InvalidPdo,
    OutaRangePdo
}

pub enum PdoChannel {
    PDO1,
    PDO2,
    PDO3
}

pub struct STUSB4500<I2C> {
    i2c: I2C,
    address: u8
}

impl<I2C, E> STUSB4500<I2C>
    where I2C: i2c::Write<Error = E> + i2c::Read<Error = E> {

    pub fn new(i2c: I2C, address: Address) -> Self {
        STUSB4500 {
            i2c,
            address: address.addr()
        }
    }

    /// Read all interrupt registers to clear them
    pub fn clear_interrupts(&mut self) -> Result<(), Error<E>>{
        // Read all interrupt registers
        let mut _buf = [0x00; 10];
        self.i2c.write(self.address, &[Register::PortStatus0 as u8]).map_err(|err| Error::I2CError(err))?;
        self.i2c.read(self.address, &mut _buf).map_err(|err| Error::I2CError(err))
    }

    /// Set interrupt mask
    pub fn set_alerts_mask(&mut self, alerts: AlertMask) -> Result<(), Error<E>>{
        self.write(Register::AlertStatus1Mask, alerts.bits())
    }

    /// Get active interrupt flags
    pub fn get_alerts(&mut self) -> Result<Alert, Error<E>>{
        Ok(Alert::from_masked_bits(self.read(Register::AlertStatus1)?))
    }

    /// Perform a soft reset
    /// Triggers re-negotiation of PDO's.
    pub fn soft_reset(&mut self) -> Result<(), Error<E>> {
        self.write(Register::TXHeaderL, 0x0D)?;
        self.write(Register::PDCommandCtrl, 0x26)?;
        Ok(())
    }

    pub fn set_pdo(&mut self, pdo: PdoChannel, data: &Pdo) -> Result<(), Error<E>> {
        if let Pdo::Fixed {..} = data {
            self.write_word(match pdo {
                PdoChannel::PDO1 => Register::DPMSNKPDO1,
                PdoChannel::PDO2 => Register::DPMSNKPDO2,
                PdoChannel::PDO3 => Register::DPMSNKPDO3,
            }, data.bits())
        }else{
            // Can only advertise fixed PDOs
            Err(Error::InvalidPdo)
        }
    }
    
    pub fn get_pdo(&mut self, pdo: PdoChannel) -> Result<Pdo, Error<E>> {
        Pdo::from_bits(self.read_word(match pdo {
            PdoChannel::PDO1 => Register::DPMSNKPDO1,
            PdoChannel::PDO2 => Register::DPMSNKPDO2,
            PdoChannel::PDO3 => Register::DPMSNKPDO3,
        })?).ok_or(Error::InvalidPdo)
    }

    pub fn get_current_rdo(&mut self) -> Result<Rdo, Error<E>>{
        Ok(Rdo(self.read_word(Register::RDORegStatus)?))
    }

    pub fn set_num_pdo(&mut self, num: u8) -> Result<(), Error<E>>{
        match num {
            1..=3 => {
                self.write(Register::DPMPDONumb, num)
            },
            _ => Err(Error::OutaRangePdo)
        }
    }
    // *****************************************************************
    // Raw access functions

    /// Write a byte register
    pub(crate) fn write(&mut self, register: Register, value: u8) -> Result<(), Error<E>> {
        let buf = [register as u8, value];
        self.i2c.write(self.address, &buf).map_err(|err| Error::I2CError(err))
    }

    /// Write a word register
    pub(crate) fn write_word(&mut self, register: Register, word: u32) -> Result<(), Error<E>> {
        let mut buf = [0x00; 5];
        buf[0] = register as u8;
        LittleEndian::write_u32(&mut buf[1..], word);
        self.i2c.write(self.address, &buf).map_err(|err| Error::I2CError(err))
    }

    /// Read a byte register
    pub(crate) fn read(&mut self, register: Register) -> Result<u8, Error<E>> {
        let mut buf = [0x00; 1];
        self.i2c.write(self.address, &[register as u8]).map_err(|err| Error::I2CError(err))?;
        self.i2c.read(self.address, &mut buf).map_err(|err| Error::I2CError(err))?;
        Ok(buf[0])
    }

    /// Read a word register
    pub(crate) fn read_word(&mut self, register: Register) -> Result<u32, Error<E>> {
        let mut buf = [0x00; 4];
        self.i2c.write(self.address, &[register as u8]).map_err(|err| Error::I2CError(err))?;
        self.i2c.read(self.address, &mut buf).map_err(|err| Error::I2CError(err))?;
        Ok(LittleEndian::read_u32(&buf))
    }

}






#[cfg(test)]
mod tests {
    #[test]
    fn it_works() {
        assert_eq!(2 + 2, 4);
    }
}