1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// Copyright 2020-2021 IOTA Stiftung
// SPDX-License-Identifier: Apache-2.0

use crate::{
    locked_memory::LockedMemory,
    memories::buffer::Buffer,
    MemoryError::{self, *},
    ZeroizeOnDrop, DEBUG_MSG,
};
use core::{
    fmt::{self, Debug, Formatter},
    marker::PhantomData,
};
use zeroize::Zeroize;

use serde::{
    de::{Deserialize, Deserializer, SeqAccess, Visitor},
    ser::{Serialize, Serializer},
};

/// Protected ram memory that may be encrypted or not
/// This is basically a wrapper for the Buffer type, but the usage
/// is different, buffer type are meant for short lived usage while
/// RamMemory can store data for longer period of time.
/// Hence data in RamMemory has to be either encrypted or protected
/// behind a scheme
#[derive(Clone)]
pub struct RamMemory {
    buf: Buffer<u8>,
    // Size of the data when decrypted
    size: usize,
}

impl RamMemory {
    pub fn alloc(payload: &[u8], size: usize) -> Result<Self, MemoryError> {
        if size == 0 {
            return Err(ZeroSizedNotAllowed);
        }

        Ok(RamMemory {
            buf: Buffer::alloc(payload, size),
            size,
        })
    }

    #[cfg(test)]
    #[allow(dead_code)]
    /// Returns the address of the pointer to the data
    pub fn get_ptr_address(&self) -> usize {
        self.buf.get_ptr_address()
    }
}

impl LockedMemory for RamMemory {
    /// Locks the memory and possibly reallocates
    // Currently we reallocate a new RamMemory at each lock
    // This improves security but decreases performance
    fn update(self, payload: Buffer<u8>, size: usize) -> Result<Self, MemoryError> {
        RamMemory::alloc(&payload.borrow(), size)
    }

    /// Unlocks the memory
    fn unlock(&self) -> Result<Buffer<u8>, MemoryError> {
        if self.size == 0 {
            return Err(ZeroSizedNotAllowed);
        }

        let buf_borrow = &*self.buf.borrow();
        Ok(Buffer::alloc(buf_borrow, self.size))
    }
}

impl Zeroize for RamMemory {
    fn zeroize(&mut self) {
        self.buf.zeroize();
        self.size.zeroize();
    }
}

impl ZeroizeOnDrop for RamMemory {}

impl Drop for RamMemory {
    fn drop(&mut self) {
        self.zeroize()
    }
}

impl Debug for RamMemory {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        write!(f, "{}", DEBUG_MSG)
    }
}

unsafe impl Send for RamMemory {}
unsafe impl Sync for RamMemory {}

impl Serialize for RamMemory {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        let buf = self.unlock().expect("Failed to unlock RamMemory for serialization");
        buf.serialize(serializer)
    }
}

struct RamMemoryVisitor {
    marker: PhantomData<fn() -> RamMemory>,
}

impl RamMemoryVisitor {
    fn new() -> Self {
        RamMemoryVisitor { marker: PhantomData }
    }
}

impl<'de> Visitor<'de> for RamMemoryVisitor {
    type Value = RamMemory;

    fn expecting(&self, formatter: &mut Formatter) -> fmt::Result {
        formatter.write_str("RamMemory not found")
    }

    fn visit_seq<E>(self, mut access: E) -> Result<Self::Value, E::Error>
    where
        E: SeqAccess<'de>,
    {
        let mut seq = Vec::<u8>::with_capacity(access.size_hint().unwrap_or(0));

        while let Some(e) = access.next_element()? {
            seq.push(e);
        }

        let seq =
            RamMemory::alloc(seq.as_slice(), seq.len()).expect("Failed to allocate RamMemory during deserialization");

        Ok(seq)
    }
}

impl<'de> Deserialize<'de> for RamMemory {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        deserializer.deserialize_seq(RamMemoryVisitor::new())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn ram_zeroize() {
        let ram = RamMemory::alloc(&[1, 2, 3, 4, 5, 6][..], 6);
        assert!(ram.is_ok());
        let mut ram = ram.unwrap();
        ram.zeroize();

        // Check that the fields are zeroed
        assert_eq!(ram.size, 0);
        assert!((*ram.buf.borrow()).is_empty());
        assert!(ram.unlock().is_err());
    }
}