1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
use core::iter::IntoIterator;
use core::slice;

//use crate::roots::RootFindingError;

use super::*;
use crate::point::Point;
use crate::spline::Spline;

/// General implementation of a Bezier curve of arbitrary degree (= number of control points - 1).
/// The curve is solely defined by an array of 'control_points'. The degree is defined as degree = control_points.len() - 1.
/// Points on the curve can be evaluated with an interpolation parameter 't' in interval [0,1] using the eval() and eval_casteljau() methods.
/// Generic parameters:
/// P: Generic points 'P' as defined by there Point trait
/// const generic parameters:
/// N: Number of control points
#[derive(Clone, Copy)]
pub struct Bezier<P, const N: usize>
where
    P: Point,
{
    /// Control points which define the curve and hence its degree
    control_points: [P; N],
}

impl<P, const N: usize> Spline<P> for Bezier<P, { N }>
where
    P: Point,
{
    fn eval(&self, t: P::Scalar) -> P {
        self.eval(t)
    }
}

impl<P: Point, const N: usize> IntoIterator for Bezier<P, { N }> {
    type Item = P;
    type IntoIter = core::array::IntoIter<Self::Item, N>;

    fn into_iter(self) -> Self::IntoIter {
        IntoIterator::into_iter(self.control_points)
    }
}

impl<'a, P: Point, const N: usize> IntoIterator for &'a mut Bezier<P, { N }> {
    type Item = &'a mut P;
    type IntoIter = slice::IterMut<'a, P>;

    fn into_iter(self) -> slice::IterMut<'a, P> {
        self.control_points.iter_mut()
    }
}

impl<P, const N: usize> Bezier<P, { N }>
where
    P: Point,
{
    /// Create a new Bezier curve that interpolates the `control_points`. The degree is defined as degree = control_points.len() - 1.
    /// Desired curve must have a valid number of control points and knots in relation to its degree or the constructor will return None.
    /// A B-Spline curve requires at least one more control point than the degree (`control_points.len() >
    /// degree`) and the number of knots should be equal to `control_points.len() + degree + 1`.
    pub fn new(control_points: [P; N]) -> Bezier<P, { N }> {
        Bezier { control_points }
    }

    pub fn control_points(&self) -> [P; N] {
        self.control_points
    }

    /// Evaluate a point on the curve at point 't' which should be in the interval [0,1]
    /// This is implemented using De Casteljau's algorithm (over a temporary array with const generic sizing)
    pub fn eval(&self, t: P::Scalar) -> P {
        //let t = t.into();
        // start with a copy of the original control points array and succesively use it for evaluation
        let mut p: [P; N] = self.control_points;
        // loop up to degree = control_points.len() -1
        for i in 1..=p.len() {
            for j in 0..p.len() - i {
                p[j] = p[j] * (-t + 1.0) + p[j + 1] * t;
            }
        }
        p[0]
    }

    /// Calculates the minimum distance between given 'point' and the curve.
    /// Uses two passes with the same amount of steps in t:
    /// 1. coarse search over the whole curve
    /// 2. fine search around the minimum yielded by the coarse search
    pub fn distance_to_point(&self, point: P) -> P::Scalar {
        let nsteps: usize = 64;
        let mut tmin: P::Scalar = 0.5.into();
        let mut dmin: P::Scalar = (point - self.control_points[0]).squared_length();
        // 1. coarse pass
        for i in 0..nsteps {
            // calculate next step value
            let t: P::Scalar =
                (i as NativeFloat * 1.0 as NativeFloat / (nsteps as NativeFloat)).into();
            // calculate distance to candidate
            let candidate = self.eval(t);
            if (candidate - point).squared_length() < dmin {
                tmin = t;
                dmin = (candidate - point).squared_length();
            }
        }
        // 2. fine pass
        for i in 0..nsteps {
            // calculate next step value ( a 64th of a 64th from first step)
            let t: P::Scalar =
                (i as NativeFloat * 1.0 as NativeFloat / ((nsteps * nsteps) as NativeFloat)).into();
            // calculate distance to candidate centered around tmin from before
            let candidate: P = self.eval(tmin + t - t * (nsteps as NativeFloat / 2.0));
            if (candidate - point).squared_length() < dmin {
                tmin = t;
                dmin = (candidate - point).squared_length();
            }
        }
        dmin.sqrt()
    }

    pub fn split(&self, t: P::Scalar) -> (Self, Self) {
        // start with a copy of the original control points for now
        // TODO how to initialize const generic array without using unsafe?
        let mut left: [P; N] = self.control_points;
        let mut right: [P; N] = self.control_points;
        // these points get overriden each iteration; we save the intermediate results to 'left' and 'right'
        let mut casteljau_points: [P; N] = self.control_points;

        for i in 1..=casteljau_points.len() {
            // save start point of level
            left[i - 1] = casteljau_points[0];
            // save end point of level
            right[right.len() - i] = casteljau_points[right.len() - i];
            // calculate next level of points (one less point each level until we reach one point, the one at t)
            for j in 0..casteljau_points.len() - i {
                casteljau_points[j] =
                    casteljau_points[j] * (-t + 1.0) + casteljau_points[j + 1] * t;
            }
        }

        (
            Bezier {
                control_points: left,
            },
            Bezier {
                control_points: right,
            },
        )
    }

    /// Returns the derivative curve of self which has N-1 control points.
    /// The derivative of an nth degree Bézier curve is an (n-1)th degree Bézier curve,
    /// with one fewer term, and new weights w0...wn-1 derived from the
    /// original weights as n(wi+1 - wi). So for a 3rd degree curve, with four weights,
    /// the derivative has three new weights:
    ///     w0 = 3(w1-w0), w'1 = 3(w2-w1) and w'2 = 3(w3-w2).
    pub fn derivative(&self) -> Bezier<P, { N - 1 }> {
        let mut new_points: [P; N - 1] = [P::default(); N - 1];
        for (i, _) in self.control_points.iter().enumerate() {
            new_points[i] =
                (self.control_points[i + 1] - self.control_points[i]) * ((N - 1) as NativeFloat);
            if i == self.control_points.len() - 2 {
                break;
            }
        }
        Bezier::new(new_points)
    }

    // /// Returns the real roots of the Bezier curve along one of its coordinate
    // /// axes (i.e. the control points' axes) or a specific RootFindingError.
    // /// There are the same number of roots as the degree of the curve nroots = degree = N_points-1
    // fn real_roots(&self,
    //     axis: usize,
    //     eps: Option<P::Scalar>,
    //     max_iter: Option<usize>
    // ) -> Result<ArrayVec<[P::Scalar; N-1]>, RootFindingError>
    // {
    //     todo!();
    //     // Compute the axis-wise polynomial coefficients e.g. quadratic has N coefs a,b,c in at^2 + bt + c
    //     // to do this generically, we need to find the coefs of the bezier of degree n by binomial expansion
    //     // B_n(t) = sum_1_to_n ( binom(n,i) * s^(n-i) * t^i * p[i])
    //     let mut res: ArrayVec<[P::Scalar; N-1]> = ArrayVec::new();
    //     let mut npascal:    [P::Scalar; N] = [ P::Scalar::from(0.0); N];
    //     let poly_coefs:     [P::Scalar; N] = [ P::Scalar::from(0.0); N];

    //     // 1. calculate the n-th row of pascals triangle on a zero-based index (all values for i in the binom(n,i) part)
    //     //    1      N = 0 (wouldn't compile due to index out of bounds)
    //     //  1  (1)   N = 1 (last 1 is always omitted)
    //     // 1  2  (1) N = 2
    //     npascal[0] = 1.0.into();
    //     for i in 1usize..N {
    //         npascal[i] = npascal[i-1] * (N - i + 1) as NativeFloat / i as NativeFloat;
    //     }
    //     // 2. calculate the coefficients to binom(n,i) and p[i] (the s^(n-i) part)

    //     // 3. find candidate points for roots of that curve (compare zero crossings)

    //     // 4. search for roots using newton-raphson algo
    //     let eps = eps.unwrap_or(1e-3.into());
    //     let max_iter = max_iter.unwrap_or(128);

    //     let mut x = P::Scalar::from(0.0);

    //     let mut iter = 0;
    //     loop {
    //         let f = f(x);
    //         let d = d(x);
    //         if f < eps {
    //             return Ok(x);
    //         }
    //         // if derivative is 0
    //         if d < EPSILON {
    //             // either try to choose a better starting point
    //             if iter == 0 {
    //                 x = x + 1.0;
    //                 iter = iter + 1;
    //                 continue;
    //             // or fail
    //             } else {
    //                 return Err(RootFindingError::ZeroDerivative);
    //             }
    //         }

    //         let x1 = x - f / d;
    //         if (x - x1).abs() < eps {
    //             return Ok(x1);
    //         }

    //         x = x1;
    //         iter = iter + 1;

    //         if iter == max_iter {
    //             return Err(RootFindingError::FailedToConverge);
    //         }
    //     }
    //     res
    // }

    /// Approximates the arc length of the curve by flattening it with straight line segments.
    /// This works quite well, at ~32 segments it should already provide an error in the decimal places
    /// The accuracy gain falls off with more steps so this approximation is unfeasable if desired accuracy is greater than 1-2 decimal places
    pub fn arclen(&self, nsteps: usize) -> P::Scalar {
        let stepsize = P::Scalar::from(1.0 / (nsteps as NativeFloat));
        let mut arclen: P::Scalar = 0.0.into();
        for t in 1..nsteps {
            let t = P::Scalar::from(t as NativeFloat * 1.0 / (nsteps as NativeFloat));
            let p1 = self.eval(t);
            let p2 = self.eval(t + stepsize);

            arclen = arclen + (p1 - p2).squared_length().sqrt();
        }
        arclen
    }
}

#[cfg(test)]
mod tests {
    use super::CubicBezier;
    use super::PointN;
    use super::QuadraticBezier;
    use super::*;

    //use crate::num_traits::{Pow};
    #[test]
    fn eval_endpoints() {
        let points = [
            PointN::new([0f64, 1.77f64]),
            PointN::new([1.1f64, -1f64]),
            PointN::new([4.3f64, 3f64]),
            PointN::new([3.2f64, -4f64]),
            PointN::new([7.3f64, 2.7f64]),
            PointN::new([8.9f64, 1.7f64]),
        ];

        let curve: Bezier<PointN<f64, 2>, 6> = Bezier::new(points);

        // check if start/end points match
        let start = curve.eval(0.0);
        let err_start = start - points[0];
        assert!(err_start.squared_length() < EPSILON);

        let end = curve.eval(1.0);
        let err_end = end - points[points.len() - 1];
        assert!(err_end.squared_length() < EPSILON);
    }

    #[test]
    fn distance_to_point() {
        // chose some arbitrary control points and construct a cubic bezier
        let bezier = Bezier {
            control_points: [
                PointN::new([0f64, 1.77f64]),
                PointN::new([2.9f64, 0f64]),
                PointN::new([4.3f64, 3f64]),
                PointN::new([3.2f64, -4f64]),
            ],
        };
        assert!(
            bezier.distance_to_point(PointN::new([-5.1, -5.6]))
                > bezier.distance_to_point(PointN::new([5.1, 5.6]))
        );
    }

    #[test]
    fn split_equivalence() {
        // chose some arbitrary control points and construct a cubic bezier
        let bezier = Bezier {
            control_points: [
                PointN::new([0f64, 1.77f64]),
                PointN::new([2.9f64, 0f64]),
                PointN::new([4.3f64, 3f64]),
                PointN::new([3.2f64, -4f64]),
            ],
        };
        // split it at an arbitrary point
        let at = 0.5;
        let (left, right) = bezier.split(at);
        // compare left and right subcurves with parent curve
        // take the difference of the two points which must not exceed the absolute error
        let nsteps: usize = 1000;
        for t in 0..=nsteps {
            let t = t as f64 * 1f64 / (nsteps as f64);
            // check the left part of the split curve
            let mut err = bezier.eval(t / 2.0) - left.eval(t);
            assert!(err.squared_length() < EPSILON);
            // check the right part of the split curve
            err = bezier.eval((t * 0.5) + 0.5) - right.eval(t);
            assert!(err.squared_length() < EPSILON);
        }
    }

    #[test]
    /// Check whether the generic implementation is
    /// equivalent to the specialized cubic implementation
    fn equivalence_cubic_specialization() {
        let cubic_bezier = CubicBezier::new(
            PointN::new([0f64, 1.77f64]),
            PointN::new([1.1f64, -1f64]),
            PointN::new([4.3f64, 3f64]),
            PointN::new([3.2f64, -4f64]),
        );

        let generic_bezier = Bezier {
            control_points: [
                PointN::new([0f64, 1.77f64]),
                PointN::new([1.1f64, -1f64]),
                PointN::new([4.3f64, 3f64]),
                PointN::new([3.2f64, -4f64]),
            ],
        };

        let nsteps: usize = 1000;
        for t in 0..=nsteps {
            let t = t as f64 * 1f64 / (nsteps as f64);
            let err = cubic_bezier.eval(t) - generic_bezier.eval(t);
            assert!(err.squared_length() < EPSILON);
        }
    }

    #[test]
    /// Check whether the generic implementation is
    /// equivalent to the specialized quadratic implementation
    fn equivalence_quadratic_specialization() {
        let quadratic_bezier = QuadraticBezier::new(
            PointN::new([0f64, 1.77f64]),
            PointN::new([1.1f64, -1f64]),
            PointN::new([3.2f64, -4f64]),
        );

        let generic_bezier = Bezier {
            control_points: [
                PointN::new([0f64, 1.77f64]),
                PointN::new([1.1f64, -1f64]),
                PointN::new([3.2f64, -4f64]),
            ],
        };

        let nsteps: usize = 1000;
        for t in 0..=nsteps {
            let t = t as f64 * 1f64 / (nsteps as f64);
            let err = quadratic_bezier.eval(t) - generic_bezier.eval(t);
            assert!(err.squared_length() < EPSILON);
        }
    }
}