1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
//! This crate provides a slice-like [`Stride<T, S>`] type where elements are
//! spaced a constant `S` elements in memory.
//!
//! For example, given an underlying slice `&[1, 2, 3, 4, 5, 6]`, the elements
//! `&[1, 3, 5]` are a strided slice with a stride of 2. This crate makes use of
//! const generics to provide the stride value `S` at compile time so that there
//! is no runtime memory overhead to strided slices; `Stride` takes up the same
//! amount of space as a slice.
//!
//! Many slice-like operations are implemented for `Stride` including iteration
//! and indexing. Method names are similar to those of the slice type.
//!
//! Where you want a strided slice use:
//! - [`::new()`][`Stride::new`] to construct a [`&Stride<T, S>`][`Stride`] that
//!   wraps a [`&[T]`][`slice`].
//! - [`::new_mut()`][`Stride::new_mut`] to construct a
//!   [`&mut Stride<T, S>`][`Stride`] that wraps a [`&mut [T]`][`slice`].
//!
//! ```rust
//! use stride::Stride;
//!
//! // The underlying data.
//! let data = &mut [1, 2, 7, 4, 5, 6];
//!
//! // Create a strided slice with a stride of `2` referring to
//! // elements `1`, `7`, and `5`.
//! let stride = Stride::<_, 2>::new_mut(data);
//!
//! assert_eq!(stride.len(), 3);
//!
//! // We can use indexing to view values ..
//! assert_eq!(stride[0], 1);
//! assert_eq!(stride[1..3], &[7, 5]);
//!
//! // .. or modify them.
//! stride[1] = 3;
//! assert_eq!(stride, &[1, 3, 5]);
//! assert_eq!(data, &[1, 2, 3, 4, 5, 6]);
//! ```

#![no_std]
#![allow(unused_unsafe)]

mod index;
mod iter;
mod ops;

use core::fmt;

pub use crate::index::StrideIndex;
pub use crate::iter::{Iter, IterMut};

/// A constant strided slice.
#[repr(transparent)]
pub struct Stride<T, const S: usize> {
    data: [T],
}

impl<T, const S: usize> fmt::Debug for Stride<T, S>
where
    T: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_list().entries(self.iter()).finish()
    }
}

impl<T, const S: usize> Default for &Stride<T, S> {
    fn default() -> Self {
        Stride::new(&[])
    }
}

impl<T, const S: usize> Default for &mut Stride<T, S> {
    fn default() -> Self {
        Stride::new_mut(&mut [])
    }
}

impl<T, const S: usize> Stride<T, S> {
    /// Constructs a new strided slice.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stride::Stride;
    /// #
    /// let data = &[1, 2, 3, 4, 5, 6];
    /// let stride = Stride::<_, 3>::new(data);
    /// ```
    pub fn new(data: &[T]) -> &Self {
        unsafe { &*(data as *const [T] as *const Self) }
    }

    /// Constructs a new mutable strided slice.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stride::Stride;
    /// #
    /// let data = &mut [1, 2, 3, 4, 5, 6];
    /// let stride = Stride::<_, 3>::new_mut(data);
    /// ```
    pub fn new_mut(data: &mut [T]) -> &mut Self {
        unsafe { &mut *(data as *mut [T] as *mut Self) }
    }

    /// Returns the number of elements in the strided slice.
    ///
    /// This is equivalent to the ceiling division of the underlying slice
    /// length by `S`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stride::Stride;
    /// #
    /// let data = &[1, 2, 3, 4, 5, 6];
    /// assert_eq!(Stride::<_, 1>::new(data).len(), 6);
    /// assert_eq!(Stride::<_, 2>::new(data).len(), 3);
    /// assert_eq!(Stride::<_, 3>::new(data).len(), 2);
    /// ```
    pub const fn len(&self) -> usize {
        (self.data.len() + S - 1) / S
    }

    /// Returns `true` if the strided slice has a length of 0.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stride::Stride;
    /// #
    /// let stride = Stride::<_, 3>::new(&[1, 2, 3, 4, 5, 6]);
    /// assert!(!stride.is_empty());
    /// ```
    pub const fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns a raw pointer to the underlying slice's buffer.
    ///
    /// *See [`slice::as_ptr()`].*
    pub const fn as_ptr(&self) -> *const T {
        self.data.as_ptr()
    }

    /// Returns an unsafe mutable pointer to the underlying slice's buffer.
    ///
    /// *See [`slice::as_mut_ptr()`].*
    pub fn as_mut_ptr(&mut self) -> *mut T {
        self.data.as_mut_ptr()
    }

    /// Returns a reference to an element or substride depending on the type of
    /// index.
    ///
    /// - If given a position, returns a reference to the element at that
    ///   position or `None` if out of bounds.
    /// - If given a range, returns the substride corresponding to that range,
    ///   or `None` if out of bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stride::Stride;
    /// #
    /// let stride = Stride::<_, 2>::new(&[1, 2, 3, 4, 5, 6]);
    /// assert_eq!(stride.get(1), Some(&3));
    /// assert_eq!(stride.get(0..2), Some(Stride::<_, 2>::new(&[1, 2, 3, 4])));
    /// assert_eq!(stride.get(3), None);
    /// assert_eq!(stride.get(0..4), None);
    /// ```
    pub fn get<I>(&self, index: I) -> Option<&I::Output>
    where
        I: StrideIndex<Stride<T, S>>,
    {
        index.get(self)
    }

    /// Returns a mutable reference to an element or substride depending on the
    /// type of index (see [`get`]) or `None` if the index is out of bounds.
    ///
    /// [`get`]: #method.get
    ///
    /// # Examples
    ///
    /// ```
    /// # use stride::Stride;
    /// #
    /// let data = &mut [0, 1, 2, 3];
    /// let stride = Stride::<_, 2>::new_mut(data);
    ///
    /// if let Some(elem) = stride.get_mut(1) {
    ///     *elem = 42;
    /// }
    /// assert_eq!(stride, Stride::<_, 2>::new(&[0, 1, 42, 3]));
    /// ```
    pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
    where
        I: StrideIndex<Stride<T, S>>,
    {
        index.get_mut(self)
    }

    /// Returns a reference to an element or substride, without doing bounds
    /// checking.
    ///
    /// For a safe alternative see [`get`].
    ///
    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
    /// even if the resulting reference is not used.
    ///
    /// [`get`]: #method.get
    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    pub unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
    where
        I: StrideIndex<Self>,
    {
        unsafe { &*index.get_unchecked(self) }
    }

    /// Returns a mutable reference to an element or substride, without doing
    /// bounds checking.
    ///
    /// For a safe alternative see [`get_mut`].
    ///
    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
    /// even if the resulting reference is not used.
    ///
    /// [`get_mut`]: #method.get_mut
    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
    where
        I: StrideIndex<Self>,
    {
        unsafe { &mut *index.get_unchecked_mut(self) }
    }

    /// Returns a reference to the first element of the strided slice, or `None`
    /// if it is empty.
    pub fn first(&self) -> Option<&T> {
        self.get(0)
    }

    /// Returns a mutable reference to the first element of the strided slice,
    /// or `None` if it is empty.
    pub fn first_mut(&mut self) -> Option<&mut T> {
        self.get_mut(0)
    }

    /// Returns a reference to the last element of the strided slice, or `None`
    /// if it is empty.
    pub fn last(&self) -> Option<&T> {
        self.get(self.len().saturating_sub(1))
    }

    /// Returns a mutable reference to the last element of the strided slice, or
    /// `None` if it is empty.
    pub fn last_mut(&mut self) -> Option<&mut T> {
        self.get_mut(self.len().saturating_sub(1))
    }

    /// Swaps two elements in the strided slice.
    ///
    /// # Arguments
    ///
    /// - `a` - The index of the first element
    /// - `b` - The index of the second element
    ///
    /// # Panics
    ///
    /// If `a` or `b` are out of bounds.
    pub fn swap(&mut self, a: usize, b: usize) {
        self.data.swap(a * S, b * S)
    }

    /// Returns an iterator over the stride.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stride::Stride;
    /// #
    /// let stride = Stride::<_, 2>::new(&[1, 2, 3, 4, 5, 6]);
    /// let mut iterator = stride.iter();
    /// assert_eq!(iterator.next(), Some(&1));
    /// assert_eq!(iterator.next(), Some(&3));
    /// assert_eq!(iterator.next(), Some(&5));
    /// assert_eq!(iterator.next(), None);
    /// ```
    pub fn iter(&self) -> Iter<T, S> {
        Iter::new(self)
    }

    /// Returns an iterator over the stride that allows modifying each value.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stride::Stride;
    /// #
    /// let slice = &mut [1, 1, 2, 2, 3, 3];
    /// let stride = Stride::<_, 2>::new_mut(slice);
    /// for elem in stride.iter_mut() {
    ///     *elem *= 2;
    /// }
    /// assert_eq!(slice, &[2, 1, 4, 2, 6, 3]);
    /// ```
    pub fn iter_mut(&mut self) -> IterMut<T, S> {
        IterMut::new(self)
    }
}

impl<T> Stride<T, 1> {
    /// Returns a slice containing the entire strided slice.
    ///
    /// Only available on strided slices with a stride of `1`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stride::Stride;
    /// #
    /// let slice = &[1, 2, 3];
    /// let stride = Stride::<_, 1>::new(slice);
    /// assert_eq!(stride.as_slice(), slice);
    /// ```
    pub fn as_slice(&self) -> &[T] {
        &self.data
    }

    /// Returns a mutable slice containing the entire strided slice.
    ///
    /// Only available on strided slices with a stride of `1`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stride::Stride;
    /// #
    /// let slice = &mut [1, 2, 7];
    /// let stride = Stride::<_, 1>::new_mut(slice);
    /// stride.as_mut_slice()[2] = 3;
    /// assert_eq!(slice, &[1, 2, 3])
    /// ```
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        &mut self.data
    }
}