1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
// LNP/BP Core Library implementing LNPBP specifications & standards
// Written in 2020 by
//     Dr. Maxim Orlovsky <orlovsky@pandoracore.com>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the MIT License
// along with this software.
// If not, see <https://opensource.org/licenses/MIT>.

use std::io;

use bitcoin::hashes::{hash160, hmac, sha256, sha256d, sha256t, sha512, Hash};
use bitcoin::util::psbt::PartiallySignedTransaction;
use bitcoin::{
    secp256k1, util::bip32, BlockHash, OutPoint, PubkeyHash, Script,
    ScriptHash, SigHash, Transaction, TxIn, TxOut, Txid, WPubkeyHash,
    WScriptHash, Wtxid, XpubIdentifier,
};

use crate::{strategies, Error, Strategy, StrictDecode, StrictEncode};

impl Strategy for Txid {
    type Strategy = strategies::HashFixedBytes;
}
impl Strategy for Wtxid {
    type Strategy = strategies::HashFixedBytes;
}
impl Strategy for BlockHash {
    type Strategy = strategies::HashFixedBytes;
}
impl Strategy for XpubIdentifier {
    type Strategy = strategies::HashFixedBytes;
}
impl Strategy for PubkeyHash {
    type Strategy = strategies::HashFixedBytes;
}
impl Strategy for WPubkeyHash {
    type Strategy = strategies::HashFixedBytes;
}
impl Strategy for ScriptHash {
    type Strategy = strategies::HashFixedBytes;
}
impl Strategy for WScriptHash {
    type Strategy = strategies::HashFixedBytes;
}
impl Strategy for SigHash {
    type Strategy = strategies::HashFixedBytes;
}

impl Strategy for sha256::Hash {
    type Strategy = strategies::HashFixedBytes;
}
impl Strategy for sha256d::Hash {
    type Strategy = strategies::HashFixedBytes;
}
impl<T> Strategy for sha256t::Hash<T>
where
    T: sha256t::Tag,
{
    type Strategy = strategies::HashFixedBytes;
}
impl Strategy for sha512::Hash {
    type Strategy = strategies::HashFixedBytes;
}
impl Strategy for hash160::Hash {
    type Strategy = strategies::HashFixedBytes;
}
impl<T> Strategy for hmac::Hmac<T>
where
    T: Hash,
{
    type Strategy = strategies::HashFixedBytes;
}

impl Strategy for OutPoint {
    type Strategy = strategies::BitcoinConsensus;
}
impl Strategy for TxOut {
    type Strategy = strategies::BitcoinConsensus;
}
impl Strategy for TxIn {
    type Strategy = strategies::BitcoinConsensus;
}
impl Strategy for Transaction {
    type Strategy = strategies::BitcoinConsensus;
}
impl Strategy for PartiallySignedTransaction {
    type Strategy = strategies::BitcoinConsensus;
}

impl StrictEncode for Script {
    #[inline]
    fn strict_encode<E: io::Write>(&self, e: E) -> Result<usize, Error> {
        Ok(self.to_bytes().strict_encode(e)?)
    }
}

impl StrictDecode for Script {
    #[inline]
    fn strict_decode<D: io::Read>(d: D) -> Result<Self, Error> {
        Ok(Self::from(Vec::<u8>::strict_decode(d)?))
    }
}

impl StrictEncode for secp256k1::SecretKey {
    #[inline]
    fn strict_encode<E: io::Write>(&self, mut e: E) -> Result<usize, Error> {
        Ok(e.write(&self[..])?)
    }
}

impl StrictDecode for secp256k1::SecretKey {
    #[inline]
    fn strict_decode<D: io::Read>(mut d: D) -> Result<Self, Error> {
        let mut buf = [0u8; secp256k1::constants::SECRET_KEY_SIZE];
        d.read_exact(&mut buf)?;
        Ok(Self::from_slice(&buf).map_err(|_| {
            Error::DataIntegrityError("invalid private key data".to_string())
        })?)
    }
}

impl StrictEncode for secp256k1::PublicKey {
    #[inline]
    fn strict_encode<E: io::Write>(&self, mut e: E) -> Result<usize, Error> {
        Ok(e.write(&self.serialize())?)
    }
}

impl StrictDecode for secp256k1::PublicKey {
    #[inline]
    fn strict_decode<D: io::Read>(mut d: D) -> Result<Self, Error> {
        let mut buf = [0u8; secp256k1::constants::PUBLIC_KEY_SIZE];
        d.read_exact(&mut buf)?;
        Ok(Self::from_slice(&buf).map_err(|_| {
            Error::DataIntegrityError("invalid public key data".to_string())
        })?)
    }
}

impl StrictEncode for secp256k1::Signature {
    #[inline]
    fn strict_encode<E: io::Write>(&self, mut e: E) -> Result<usize, Error> {
        Ok(e.write(&self.serialize_compact())?)
    }
}

impl StrictDecode for secp256k1::Signature {
    #[inline]
    fn strict_decode<D: io::Read>(mut d: D) -> Result<Self, Error> {
        let mut buf = [0u8; secp256k1::constants::COMPACT_SIGNATURE_SIZE];
        d.read_exact(&mut buf)?;
        Ok(Self::from_compact(&buf).map_err(|_| {
            Error::DataIntegrityError(
                "Invalid secp256k1 signature data".to_string(),
            )
        })?)
    }
}

impl StrictEncode for bitcoin::PublicKey {
    #[inline]
    fn strict_encode<E: io::Write>(&self, mut e: E) -> Result<usize, Error> {
        Ok(if self.compressed {
            e.write(&self.key.serialize())?
        } else {
            e.write(&self.key.serialize_uncompressed())?
        })
    }
}

impl StrictDecode for bitcoin::PublicKey {
    #[inline]
    fn strict_decode<D: io::Read>(mut d: D) -> Result<Self, Error> {
        let marker = u8::strict_decode(&mut d)?;
        match marker {
            0x04 => {
                let mut buf = [0u8; secp256k1::constants::UNCOMPRESSED_PUBLIC_KEY_SIZE];
                buf[0] = marker;
                d.read_exact(&mut buf[1..])?;
                Ok(Self::from_slice(&buf).map_err(|_| {
                    Error::DataIntegrityError("Wrong public key data sequence".to_string())
                })?)
            }
            0x03 | 0x02 => {
                let mut buf = [0u8; secp256k1::constants::PUBLIC_KEY_SIZE];
                buf[0] = marker;
                d.read_exact(&mut buf[1..])?;
                Ok(Self::from_slice(&buf).map_err(|_| {
                    Error::DataIntegrityError("Wrong public key data sequence".to_string())
                })?)
            }
            invalid_flag => Err(Error::DataIntegrityError(format!(
                "Invalid public key encoding flag {}; must be either 0x02, 0x03 or 0x4",
                invalid_flag
            ))),
        }
    }
}

impl StrictEncode for bitcoin::Network {
    #[inline]
    fn strict_encode<E: io::Write>(&self, mut e: E) -> Result<usize, Error> {
        Ok(self.magic().strict_encode(&mut e)?)
    }
}

impl StrictDecode for bitcoin::Network {
    #[inline]
    fn strict_decode<D: io::Read>(mut d: D) -> Result<Self, Error> {
        let magic = u32::strict_decode(&mut d)?;
        Ok(Self::from_magic(magic).ok_or(Error::ValueOutOfRange(
            "bitcoin::Network",
            0..0,
            magic as u128,
        ))?)
    }
}

impl StrictEncode for bip32::ChildNumber {
    #[inline]
    fn strict_encode<E: io::Write>(&self, mut e: E) -> Result<usize, Error> {
        let (t, index) = match self {
            bip32::ChildNumber::Normal { index } => (0u8, index),
            bip32::ChildNumber::Hardened { index } => (1u8, index),
        };
        Ok(strict_encode_list!(e; t, index))
    }
}

impl StrictDecode for bip32::ChildNumber {
    fn strict_decode<D: io::Read>(mut d: D) -> Result<Self, Error> {
        let t = u8::strict_decode(&mut d)?;
        let index = u32::strict_decode(&mut d)?;
        Ok(match t {
            0 => bip32::ChildNumber::Normal { index },
            1 => bip32::ChildNumber::Hardened { index },
            x => Err(Error::EnumValueNotKnown(
                "bip32::ChildNumber".to_string(),
                x,
            ))?,
        })
    }
}

impl StrictEncode for bip32::DerivationPath {
    #[inline]
    fn strict_encode<E: io::Write>(&self, mut e: E) -> Result<usize, Error> {
        let buf: Vec<bip32::ChildNumber> =
            self.into_iter().map(bip32::ChildNumber::clone).collect();
        Ok(buf.strict_encode(&mut e)?)
    }
}

impl StrictDecode for bip32::DerivationPath {
    #[inline]
    fn strict_decode<D: io::Read>(mut d: D) -> Result<Self, Error> {
        Ok(Self::from(Vec::<bip32::ChildNumber>::strict_decode(
            &mut d,
        )?))
    }
}

impl StrictEncode for bip32::ChainCode {
    #[inline]
    fn strict_encode<E: io::Write>(&self, mut e: E) -> Result<usize, Error> {
        Ok(e.write(self.as_bytes())?)
    }
}

impl StrictDecode for bip32::ChainCode {
    #[inline]
    fn strict_decode<D: io::Read>(mut d: D) -> Result<Self, Error> {
        let mut buf = [0u8; 32];
        d.read_exact(&mut buf)?;
        Ok(Self::from(&buf[..]))
    }
}

impl StrictEncode for bip32::Fingerprint {
    #[inline]
    fn strict_encode<E: io::Write>(&self, mut e: E) -> Result<usize, Error> {
        Ok(e.write(self.as_bytes())?)
    }
}

impl StrictDecode for bip32::Fingerprint {
    #[inline]
    fn strict_decode<D: io::Read>(mut d: D) -> Result<Self, Error> {
        let mut buf = [0u8; 4];
        d.read_exact(&mut buf)?;
        Ok(Self::from(&buf[..]))
    }
}

impl StrictEncode for bip32::ExtendedPubKey {
    fn strict_encode<E: io::Write>(&self, mut e: E) -> Result<usize, Error> {
        Ok(e.write(&self.encode())?)
    }
}

impl StrictDecode for bip32::ExtendedPubKey {
    #[inline]
    fn strict_decode<D: io::Read>(mut d: D) -> Result<Self, Error> {
        let mut buf = [0u8; 78];
        d.read_exact(&mut buf)?;
        Ok(bip32::ExtendedPubKey::decode(&buf).map_err(|_| {
            Error::DataIntegrityError(
                "Extended pubkey integrity is broken".to_string(),
            )
        })?)
    }
}

impl StrictEncode for bip32::ExtendedPrivKey {
    #[inline]
    fn strict_encode<E: io::Write>(&self, mut e: E) -> Result<usize, Error> {
        Ok(e.write(&self.encode())?)
    }
}

impl StrictDecode for bip32::ExtendedPrivKey {
    #[inline]
    fn strict_decode<D: io::Read>(mut d: D) -> Result<Self, Error> {
        let mut buf = [0u8; 78];
        d.read_exact(&mut buf)?;
        Ok(bip32::ExtendedPrivKey::decode(&buf).map_err(|_| {
            Error::DataIntegrityError(
                "Extended privkey integrity is broken".to_string(),
            )
        })?)
    }
}

#[cfg(test)]
pub(crate) mod test {
    use std::str::FromStr;

    use bitcoin::{consensus, hashes::hex::FromHex, secp256k1::Message};

    use super::*;
    use crate::strict_serialize;
    use crate::test_helpers::test_suite;

    #[test]
    fn test_encoding_network() {
        let mainnet_bytes = &[0xF9u8, 0xBEu8, 0xB4u8, 0xD9u8][..];
        let testnet_bytes = &[0x0Bu8, 0x11u8, 0x09u8, 0x07u8][..];
        let regtest_bytes = &[0xFAu8, 0xBFu8, 0xB5u8, 0xDAu8][..];

        let mainnet = bitcoin::Network::strict_decode(mainnet_bytes).unwrap();
        let testnet = bitcoin::Network::strict_decode(testnet_bytes).unwrap();
        let regtest = bitcoin::Network::strict_decode(regtest_bytes).unwrap();

        test_suite(&mainnet, &mainnet_bytes, 4);
        test_suite(&testnet, &testnet_bytes, 4);
        test_suite(&regtest, &regtest_bytes, 4);
    }

    #[test]
    #[should_panic]
    fn test_encoding_network_failure() {
        // Bitcoin Network structure do not support "Other" networks
        let random_bytes = &[0xA1u8, 0xA2u8, 0xA3u8, 0xA4u8][..];
        bitcoin::Network::strict_decode(random_bytes).unwrap();
    }

    #[test]
    fn test_encoding_pubkey() {
        static PK_BYTES_02: [u8; 33] = [
            0x02, 0x9b, 0x63, 0x47, 0x39, 0x85, 0x05, 0xf5, 0xec, 0x93, 0x82,
            0x6d, 0xc6, 0x1c, 0x19, 0xf4, 0x7c, 0x66, 0xc0, 0x28, 0x3e, 0xe9,
            0xbe, 0x98, 0x0e, 0x29, 0xce, 0x32, 0x5a, 0x0f, 0x46, 0x79, 0xef,
        ];
        static PK_BYTES_03: [u8; 33] = [
            0x03, 0x9b, 0x63, 0x47, 0x39, 0x85, 0x05, 0xf5, 0xec, 0x93, 0x82,
            0x6d, 0xc6, 0x1c, 0x19, 0xf4, 0x7c, 0x66, 0xc0, 0x28, 0x3e, 0xe9,
            0xbe, 0x98, 0x0e, 0x29, 0xce, 0x32, 0x5a, 0x0f, 0x46, 0x79, 0xef,
        ];
        static PK_BYTES_04: [u8; 65] = [
            0x04, 0x9b, 0x63, 0x47, 0x39, 0x85, 0x05, 0xf5, 0xec, 0x93, 0x82,
            0x6d, 0xc6, 0x1c, 0x19, 0xf4, 0x7c, 0x66, 0xc0, 0x28, 0x3e, 0xe9,
            0xbe, 0x98, 0x0e, 0x29, 0xce, 0x32, 0x5a, 0x0f, 0x46, 0x79, 0xef,
            0x87, 0x28, 0x8e, 0xd7, 0x3c, 0xe4, 0x7f, 0xc4, 0xf5, 0xc7, 0x9d,
            0x19, 0xeb, 0xfa, 0x57, 0xda, 0x7c, 0xff, 0x3a, 0xff, 0x6e, 0x81,
            0x9e, 0x4e, 0xe9, 0x71, 0xd8, 0x6b, 0x5e, 0x61, 0x87, 0x5d,
        ];
        static PK_BYTES_ONEKEY: [u8; 33] = [
            0x2, 0x79, 0xbe, 0x66, 0x7e, 0xf9, 0xdc, 0xbb, 0xac, 0x55, 0xa0,
            0x62, 0x95, 0xce, 0x87, 0xb, 0x7, 0x2, 0x9b, 0xfc, 0xdb, 0x2d,
            0xce, 0x28, 0xd9, 0x59, 0xf2, 0x81, 0x5b, 0x16, 0xf8, 0x17, 0x98,
        ];

        let pubkey_02 =
            bitcoin::PublicKey::strict_decode(&PK_BYTES_02[..]).unwrap();
        let pubkey_03 =
            bitcoin::PublicKey::strict_decode(&PK_BYTES_03[..]).unwrap();
        let pubkey_04 =
            bitcoin::PublicKey::strict_decode(&PK_BYTES_04[..]).unwrap();
        let pubkey_onekey =
            bitcoin::PublicKey::strict_decode(&PK_BYTES_ONEKEY[..]).unwrap();

        test_suite(&pubkey_02, &PK_BYTES_02, 33);
        test_suite(&pubkey_03, &PK_BYTES_03, 33);
        test_suite(&pubkey_04, &PK_BYTES_04, 65);
        test_suite(&pubkey_onekey, &PK_BYTES_ONEKEY, 33);
    }

    #[test]
    #[should_panic(expected = "UnexpectedEof")]
    fn test_garbagedata_pubkey() {
        static PK_BYTES_04: [u8; 60] = [
            0x04, 0x9b, 0x63, 0x47, 0x39, 0x85, 0x05, 0xf5, 0xec, 0x93, 0x82,
            0x6d, 0xc6, 0x1c, 0x19, 0xf4, 0x7c, 0x66, 0xc0, 0x28, 0x3e, 0xe9,
            0xbe, 0x98, 0x0e, 0x29, 0xce, 0x32, 0x5a, 0x0f, 0x46, 0x79, 0xef,
            0x87, 0x28, 0x8e, 0xd7, 0x3c, 0xe4, 0x7f, 0xc4, 0xf5, 0xc7, 0x9d,
            0x19, 0xeb, 0xfa, 0x57, 0xda, 0x7c, 0xff, 0x3a, 0xff, 0x6e, 0x81,
            0x9e, 0x4e, 0xe9, 0x71, 0xd8,
        ];
        bitcoin::PublicKey::strict_decode(&PK_BYTES_04[..]).unwrap();
    }

    #[test]
    #[should_panic(expected = "DataIntegrityError")]
    fn test_grabagedata_pubkey2() {
        static PK_BYTES_02: [u8; 33] = [
            0xa5, 0x9b, 0x63, 0x47, 0x39, 0x85, 0x05, 0xf5, 0xec, 0x93, 0x82,
            0x6d, 0xc6, 0x1c, 0x19, 0xf4, 0x7c, 0x66, 0xc0, 0x28, 0x3e, 0xe9,
            0xbe, 0x98, 0x0e, 0x29, 0xce, 0x32, 0x5a, 0x0f, 0x46, 0x79, 0xef,
        ];
        bitcoin::PublicKey::strict_decode(&PK_BYTES_02[..]).unwrap();
    }

    #[test]
    fn test_encode_signature() {
        let s = secp256k1::Secp256k1::new();

        static SIG_BYTES: [u8; 64] = [
            0xdf, 0x2b, 0x7, 0x1, 0x5f, 0x2e, 0x1, 0x67, 0x74, 0x18, 0x7e,
            0xad, 0x4a, 0x4f, 0x71, 0x9a, 0x14, 0xe3, 0xe1, 0xad, 0xa1, 0x78,
            0xd6, 0x6c, 0xce, 0xcf, 0xa4, 0x5b, 0x63, 0x30, 0x70, 0xc2, 0x43,
            0xa2, 0xd7, 0x6e, 0xe0, 0x5d, 0x63, 0x49, 0xfe, 0x98, 0x69, 0x6c,
            0x1c, 0x4d, 0x9a, 0x67, 0x11, 0x24, 0xde, 0x40, 0xc5, 0x31, 0x71,
            0xa4, 0xb2, 0x82, 0xb7, 0x69, 0xb7, 0xc6, 0x96, 0xcd,
        ];

        let privkey = secp256k1::SecretKey::from_slice(&[
            0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
            0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48,
            0xA0, 0x3B, 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x40,
        ])
        .unwrap();

        let pubkey = secp256k1::PublicKey::from_secret_key(&s, &privkey);
        let msg = Message::from_slice(&[1u8; 32]).unwrap();

        let sig = s.sign(&msg, &privkey);
        let decoded_sig = test_suite(&sig, &SIG_BYTES, 64);

        assert!(s.verify(&msg, &decoded_sig, &pubkey).is_ok());
    }

    #[test]
    #[should_panic(expected = "UnexpectedEof")]
    fn test_garbagedata_sig() {
        static SIG_BYTES: [u8; 58] = [
            0xdf, 0x2b, 0x7, 0x1, 0x5f, 0x2e, 0x1, 0x67, 0x74, 0x18, 0x7e,
            0xad, 0x4a, 0x4f, 0x71, 0x9a, 0x14, 0xe3, 0xe1, 0xad, 0xa1, 0x78,
            0xd6, 0x6c, 0xce, 0xcf, 0xa4, 0x5b, 0x63, 0x30, 0x70, 0xc2, 0x43,
            0xa2, 0xd7, 0x6e, 0xe0, 0x5d, 0x63, 0x49, 0xfe, 0x98, 0x69, 0x6c,
            0x1c, 0x4d, 0x9a, 0x67, 0x11, 0x24, 0xde, 0x40, 0xc5, 0x31, 0x71,
            0xa4, 0xb2, 0x82,
        ];
        secp256k1::Signature::strict_decode(&SIG_BYTES[..]).unwrap();
    }

    #[test]
    fn test_encoding_outpoint() {
        static OUTPOINT: [u8; 36] = [
            0x53, 0xc6, 0x31, 0x13, 0xed, 0x18, 0x68, 0xfc, 0xa, 0xdf, 0x8e,
            0xcd, 0xfd, 0x1f, 0x4d, 0xd6, 0xe5, 0xe3, 0x85, 0x83, 0xa4, 0x9d,
            0xb, 0x14, 0xe7, 0xf8, 0x87, 0xa4, 0xd1, 0x61, 0x78, 0x21, 0x4,
            0x0, 0x0, 0x0,
        ];
        static OUTPOINT_NULL: [u8; 36] = [
            0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
            0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
            0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xff, 0xff, 0xff, 0xff,
        ];

        let txid = Txid::from_hex(
            "217861d1a487f8e7140b9da48385e3e5d64d1ffdcd8edf0afc6818ed1331c653",
        )
        .unwrap();
        let vout = 4u32;

        // test random and null outpoints
        let outpoint = OutPoint::new(txid, vout);
        let _ = test_suite(&outpoint, &OUTPOINT, 36);
        let null = OutPoint::null();
        let _ = test_suite(&null, &OUTPOINT_NULL, 36);
    }

    #[test]
    #[should_panic(expected = "UnexpectedEof")]
    fn test_garbagedata_outpoint() {
        static OUTPOINT: [u8; 32] = [
            0x53, 0xc6, 0x31, 0x13, 0xed, 0x18, 0x68, 0xfc, 0xa, 0xdf, 0x8e,
            0xcd, 0xfd, 0x1f, 0x4d, 0xd6, 0xe5, 0xe3, 0x85, 0x83, 0xa4, 0x9d,
            0xb, 0x14, 0xe7, 0xf8, 0x87, 0xa4, 0xd1, 0x61, 0x78, 0x21,
        ];
        OutPoint::strict_decode(&OUTPOINT[..]).unwrap();
    }

    #[test]
    fn test_tx() {
        let tx_segwit_bytes = Vec::from_hex(
            "02000000000101595895ea20179de87052b4046dfe6fd515860505d6511a9004cf\
            12a1f93cac7c0100000000ffffffff01deb807000000000017a9140f3444e271620\
            c736808aa7b33e370bd87cb5a078702483045022100fb60dad8df4af2841adc0346\
            638c16d0b8035f5e3f3753b88db122e70c79f9370220756e6633b17fd2710e62634\
            7d28d60b0a2d6cbb41de51740644b9fb3ba7751040121028fa937ca8cba2197a37c\
            007176ed8941055d3bcb8627d085e94553e62f057dcc00000000"
        ).unwrap();
        let tx_legacy1_bytes = Vec::from_hex(
            "ffffff7f0100000000000000000000000000000000000000000000000000000000\
            000000000000000000ffffffff0100f2052a01000000434104678afdb0fe5548271\
            967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f355\
            04e51ec112de5c384df7ba0b8d578a4c702b6bf11d5fac00000000"
        ).unwrap();
        let tx_legacy2_bytes = Vec::from_hex(
            "000000800100000000000000000000000000000000000000000000000000000000\
            000000000000000000ffffffff0100f2052a01000000434104678afdb0fe5548271\
            967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f355\
            04e51ec112de5c384df7ba0b8d578a4c702b6bf11d5fac00000000"
        ).unwrap();

        let tx_segwit: Transaction =
            consensus::deserialize(&tx_segwit_bytes).unwrap();
        let tx_legacy1: Transaction =
            consensus::deserialize(&tx_legacy1_bytes).unwrap();
        let tx_legacy2: Transaction =
            consensus::deserialize(&tx_legacy2_bytes).unwrap();

        assert_eq!(strict_serialize(&tx_segwit).unwrap(), tx_segwit_bytes);
        assert_eq!(strict_serialize(&tx_legacy1).unwrap(), tx_legacy1_bytes);
        assert_eq!(strict_serialize(&tx_legacy2).unwrap(), tx_legacy2_bytes);
        test_suite(&tx_segwit, &tx_segwit_bytes, tx_segwit_bytes.len());
        test_suite(&tx_legacy1, &tx_legacy1_bytes, tx_legacy1_bytes.len());
        test_suite(&tx_legacy2, &tx_legacy2_bytes, tx_legacy2_bytes.len());
    }

    #[test]
    fn test_txin() {
        let txin_bytes = Vec::from_hex(
            "a15d57094aa7a21a28cb20b59aab8fc7d1149a3bdbcddba9c622e4f5f6a99ece01\
            0000006c493046022100f93bb0e7d8db7bd46e40132d1f8242026e045f03a0efe71\
            bbb8e3f475e970d790221009337cd7f1f929f00cc6ff01f03729b069a7c21b59b17\
            36ddfee5db5946c5da8c0121033b9b137ee87d5a812d6f506efdd37f0affa7ffc31\
            0711c06c7f3e097c9447c52ffffffff"
        ).unwrap();
        let txin: TxIn = consensus::deserialize(&txin_bytes).unwrap();
        assert_eq!(strict_serialize(&txin).unwrap(), txin_bytes);
        test_suite(&txin, &txin_bytes, txin_bytes.len());
    }

    #[test]
    fn test_txout() {
        let txout_segwit_bytes = Vec::from_hex(
            "0000000000000000160014d9a1665bea770cb6ec4809943f1e8ad67a31191f",
        )
        .unwrap();
        let txout_legacy_bytes = Vec::from_hex(
            "000000000000000017a91413f5fb72e7a31fcac98df27c77217b02abdb47fd87",
        )
        .unwrap();

        let txout_segwit: TxOut =
            consensus::deserialize(&txout_segwit_bytes).unwrap();
        let txout_legacy: TxOut =
            consensus::deserialize(&txout_legacy_bytes).unwrap();

        assert_eq!(
            strict_serialize(&txout_segwit).unwrap(),
            txout_segwit_bytes
        );
        assert_eq!(
            strict_serialize(&txout_legacy).unwrap(),
            txout_legacy_bytes
        );
        test_suite(
            &txout_segwit,
            &txout_segwit_bytes,
            txout_segwit_bytes.len(),
        );
        test_suite(
            &txout_legacy,
            &txout_legacy_bytes,
            txout_legacy_bytes.len(),
        );
    }

    #[test]
    fn test_psbt() {
        let psbt_bytes = Vec::from_hex(
            "70736274ff0100750200000001268171371edff285e937adeea4b37b78000c0566\
            cbb3ad64641713ca42171bf60000000000feffffff02d3dff505000000001976a91\
            4d0c59903c5bac2868760e90fd521a4665aa7652088ac00e1f5050000000017a914\
            3545e6e33b832c47050f24d3eeb93c9c03948bc787b32e1300000100fda50101000\
            00000010289a3c71eab4d20e0371bbba4cc698fa295c9463afa2e397f8533ccb62f\
            9567e50100000017160014be18d152a9b012039daf3da7de4f53349eecb985fffff\
            fff86f8aa43a71dff1448893a530a7237ef6b4608bbb2dd2d0171e63aec6a4890b4\
            0100000017160014fe3e9ef1a745e974d902c4355943abcb34bd5353ffffffff020\
            0c2eb0b000000001976a91485cff1097fd9e008bb34af709c62197b38978a4888ac\
            72fef84e2c00000017a914339725ba21efd62ac753a9bcd067d6c7a6a39d0587024\
            7304402202712be22e0270f394f568311dc7ca9a68970b8025fdd3b240229f07f8a\
            5f3a240220018b38d7dcd314e734c9276bd6fb40f673325bc4baa144c800d2f2f02\
            db2765c012103d2e15674941bad4a996372cb87e1856d3652606d98562fe39c5e9e\
            7e413f210502483045022100d12b852d85dcd961d2f5f4ab660654df6eedcc794c0\
            c33ce5cc309ffb5fce58d022067338a8e0e1725c197fb1a88af59f51e44e4255b20\
            167c8684031c05d1f2592a01210223b72beef0965d10be0778efecd61fcac6f79a4\
            ea169393380734464f84f2ab300000000000000"
        ).unwrap();

        let psbt: PartiallySignedTransaction =
            consensus::deserialize(&psbt_bytes).unwrap();

        assert_eq!(strict_serialize(&psbt).unwrap(), psbt_bytes);
        test_suite(&psbt, &psbt_bytes, psbt_bytes.len());
    }

    #[test]
    fn test_encoding_extendedpubkey() {
        static EXT_PUBKEY1: [u8; 78] = [
            4, 136, 178, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 135, 61, 255, 129, 192,
            47, 82, 86, 35, 253, 31, 229, 22, 126, 172, 58, 85, 160, 73, 222,
            61, 49, 75, 180, 46, 226, 39, 255, 237, 55, 213, 8, 3, 57, 163, 96,
            19, 48, 21, 151, 218, 239, 65, 251, 229, 147, 160, 44, 197, 19,
            208, 181, 85, 39, 236, 45, 241, 5, 14, 46, 143, 244, 156, 133, 194,
        ];

        static EXT_PUBKEY2: [u8; 78] = [
            4, 136, 178, 30, 3, 190, 245, 162, 249, 128, 0, 0, 2, 4, 70, 107,
            156, 200, 225, 97, 233, 102, 64, 156, 165, 41, 134, 197, 132, 240,
            126, 157, 200, 31, 115, 93, 182, 131, 195, 255, 110, 199, 177, 80,
            63, 3, 87, 191, 225, 227, 65, 208, 28, 105, 254, 86, 84, 48, 153,
            86, 203, 234, 81, 104, 34, 251, 168, 166, 1, 116, 58, 1, 42, 120,
            150, 238, 141, 194,
        ];

        let ext_pubkey1 = bip32::ExtendedPubKey::from_str(
            "xpub661MyMwAqRbcFtXgS5sYJABqqG9YLmC4Q1Rdap9gSE8NqtwybGhePY2gZ2\
            9ESFjqJoCu1Rupje8YtGqsefD265TMg7usUDFdp6W1EGMcet8",
        )
        .unwrap();
        test_suite(&ext_pubkey1, &EXT_PUBKEY1, 78);

        let ext_pubkey2 = bip32::ExtendedPubKey::from_str(
            "xpub6D4BDPcP2GT577Vvch3R8wDkScZWzQzMMUm3PWbmWvVJrZwQY4VUNgqFJP\
            MM3No2dFDFGTsxxpG5uJh7n7epu4trkrX7x7DogT5Uv6fcLW5",
        )
        .unwrap();
        test_suite(&ext_pubkey2, &EXT_PUBKEY2, 78);
    }

    #[test]
    fn test_encoding_script() {
        static OP_RETURN: [u8; 40] = [
            0x26, 0x0, 0x6a, 0x24, 0xaa, 0x21, 0xa9, 0xed, 0x20, 0x28, 0xf,
            0x53, 0xf2, 0xd2, 0x16, 0x63, 0xca, 0xc8, 0x9e, 0x6b, 0xd2, 0xad,
            0x19, 0xed, 0xba, 0xbb, 0x4, 0x8c, 0xda, 0x8, 0xe7, 0x3e, 0xd1,
            0x9e, 0x92, 0x68, 0xd0, 0xaf, 0xea, 0x2a,
        ];
        static P2PK: [u8; 37] = [
            0x23, 0x0, 0x21, 0x2, 0x34, 0xe6, 0xa7, 0x9c, 0x53, 0x59, 0xc6,
            0x13, 0x76, 0x2d, 0x53, 0x7e, 0xe, 0x19, 0xd8, 0x6c, 0x77, 0xc1,
            0x66, 0x6d, 0x8c, 0x9a, 0xb0, 0x50, 0xf2, 0x3a, 0xcd, 0x19, 0x8e,
            0x97, 0xf9, 0x3e, 0xac,
        ];

        static P2PKH: [u8; 27] = [
            0x19, 0x0, 0x76, 0xa9, 0x14, 0xaa, 0xca, 0x99, 0x1e, 0x29, 0x8a,
            0xb8, 0x66, 0xab, 0x60, 0xff, 0x45, 0x22, 0x1b, 0x45, 0x8c, 0x70,
            0x33, 0x36, 0x5a, 0x88, 0xac,
        ];
        static P2SH: [u8; 25] = [
            0x17, 0x0, 0xa9, 0x14, 0x4d, 0xa3, 0x4a, 0xe8, 0x19, 0x9d, 0xbf,
            0x68, 0x4f, 0xe9, 0x7a, 0xf8, 0x70, 0x3f, 0x12, 0xe9, 0xf7, 0xaa,
            0xe6, 0x62, 0x87,
        ];
        static P2WPKH: [u8; 24] = [
            0x16, 0x0, 0x0, 0x14, 0xaa, 0xca, 0x99, 0x1e, 0x29, 0x8a, 0xb8,
            0x66, 0xab, 0x60, 0xff, 0x45, 0x22, 0x1b, 0x45, 0x8c, 0x70, 0x33,
            0x36, 0x5a,
        ];
        static P2WSH: [u8; 36] = [
            0x22, 0x0, 0x0, 0x20, 0x9d, 0x27, 0x71, 0x75, 0x73, 0x7f, 0xb5,
            0x0, 0x41, 0xe7, 0x5f, 0x64, 0x1a, 0xcf, 0x94, 0xd1, 0xd, 0xf9,
            0xb9, 0x72, 0x1d, 0xb8, 0xff, 0xfe, 0x87, 0x4a, 0xb5, 0x7f, 0x8f,
            0xfb, 0x6, 0x2e,
        ];

        // OP_RETURN
        let op_return = Script::strict_decode(&OP_RETURN[..]).unwrap();
        let decode_opreturn = test_suite(&op_return, &OP_RETURN, 40);
        assert!(decode_opreturn.is_op_return());

        // P2PK
        let p2pk = Script::strict_decode(&P2PK[..]).unwrap();
        let decode_p2pk = test_suite(&p2pk, &P2PK, 37);
        assert!(decode_p2pk.is_p2pk());

        //P2PKH
        let p2pkh = Script::strict_decode(&P2PKH[..]).unwrap();
        let decode_p2pkh = test_suite(&p2pkh, &P2PKH, 27);
        assert!(decode_p2pkh.is_p2pkh());

        //P2SH
        let p2sh = Script::strict_decode(&P2SH[..]).unwrap();
        let decode_p2sh = test_suite(&p2sh, &P2SH, 25);
        assert!(decode_p2sh.is_p2sh());

        //P2WPKH
        let p2wpkh = Script::strict_decode(&P2WPKH[..]).unwrap();
        let decode_p2wpkh = test_suite(&p2wpkh, &P2WPKH, 24);
        assert!(decode_p2wpkh.is_v0_p2wpkh());

        //P2WSH
        let p2wsh = Script::strict_decode(&P2WSH[..]).unwrap();
        let decoded_p2wsh = test_suite(&p2wsh, &P2WSH, 36);
        assert!(decoded_p2wsh.is_v0_p2wsh());
    }
}