1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
use std::default::Default;
use std::fmt;
use std::iter::{FromIterator, IntoIterator};

use Commute;

/// A commutative data structure for tracking minimum and maximum values.
///
/// This also stores the number of samples.
#[derive(Clone)]
pub struct MinMax<T> {
    len: u64,
    min: Option<T>,
    max: Option<T>,
}

impl<T: PartialOrd + Clone> MinMax<T> {
    /// Create an empty state where min and max values do not exist.
    pub fn new() -> MinMax<T> {
        Default::default()
    }

    /// Add a sample to the data.
    pub fn add(&mut self, sample: T) {
        self.len += 1;
        if self.min.as_ref().map(|v| &sample < v).unwrap_or(true) {
            self.min = Some(sample.clone());
        }
        if self.max.as_ref().map(|v| &sample > v).unwrap_or(true) {
            self.max = Some(sample);
        }
    }

    /// Returns the minimum of the data set.
    ///
    /// `None` is returned if and only if the number of samples is `0`.
    pub fn min(&self) -> Option<&T> {
        self.min.as_ref()
    }

    /// Returns the maximum of the data set.
    ///
    /// `None` is returned if and only if the number of samples is `0`.
    pub fn max(&self) -> Option<&T> {
        self.max.as_ref()
    }

    /// Returns the number of data point.
    pub fn len(&self) -> usize {
        self.len as usize
    }
}

impl<T: PartialOrd> Commute for MinMax<T> {
    fn merge(&mut self, v: MinMax<T>) {
        self.len += v.len;
        if self.min.is_none() || (!v.min.is_none() && v.min < self.min) {
            self.min = v.min;
        }
        if self.max.is_none() || (!v.max.is_none() && v.max > self.max) {
            self.max = v.max;
        }
    }
}

impl<T: PartialOrd> Default for MinMax<T> {
    fn default() -> MinMax<T> {
        MinMax {
            len: 0,
            min: None,
            max: None,
        }
    }
}

impl<T: fmt::Debug> fmt::Debug for MinMax<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match (&self.min, &self.max) {
            (&Some(ref min), &Some(ref max)) => {
                write!(f, "[{:?}, {:?}]", min, max)
            }
            (&None, &None) => write!(f, "N/A"),
            _ => unreachable!(),
        }
    }
}

impl<T: PartialOrd + Clone> FromIterator<T> for MinMax<T> {
    fn from_iter<I: IntoIterator<Item=T>>(it: I) -> MinMax<T> {
        let mut v = MinMax::new();
        v.extend(it);
        v
    }
}

impl<T: PartialOrd + Clone> Extend<T> for MinMax<T> {
    fn extend<I: IntoIterator<Item=T>>(&mut self, it: I) {
        for sample in it {
            self.add(sample);
        }
    }
}

#[cfg(test)]
mod test {
    use super::MinMax;
    use Commute;

    #[test]
    fn minmax() {
        let minmax: MinMax<u32> =
            vec![1u32, 4, 2, 3, 10].into_iter().collect();
        assert_eq!(minmax.min(), Some(&1u32));
        assert_eq!(minmax.max(), Some(&10u32));
    }

    #[test]
    fn minmax_merge_empty() {
        let mut mx1: MinMax<u32> = vec![1, 4, 2, 3, 10].into_iter().collect();
        assert_eq!(mx1.min(), Some(&1u32));
        assert_eq!(mx1.max(), Some(&10u32));

        mx1.merge(MinMax::default());
        assert_eq!(mx1.min(), Some(&1u32));
        assert_eq!(mx1.max(), Some(&10u32));
    }
}