1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
//! Encode and decode `u32`s with the Stream VByte format.
//!
//! There are two traits, `Encoder` and `Decoder`, that allow you to choose what logic to use in the
//! inner hot loops.
//! 
//! # The simple, pretty fast way
//! 
//! Use `Scalar` for your `Encoder` and `Decoder`. It will work on all hardware, and is fast enough
//! that most people will probably never notice the time taken to encode/decode.
//! 
//! # The more complex, really fast way
//! 
//! If you can use nightly Rust (currently needed for SIMD) and you know which hardware you'll be
//! running on, or you can add runtime detection of CPU features, you can choose to use an
//! implementation that takes advantage of your hardware. Something like
//! [raw-cpuid](https://crates.io/crates/raw-cpuid) will probably be useful for runtime detection.
//! 
//! Performance numbers are calculated on an E5-1650v3 on encoding/decoding 1 million random numbers
//! at a time. You can run the benchmarks yourself to see how your hardware does.
//! 
//! Both `feature`s and `target_feature`s are used because `target_feature` is not in stable Rust
//! yet and this library should remain usable by stable Rust, so non-stable-friendly things are
//! hidden behind `feature`s.
//! 
//! ## Encoders
//! 
//! | Type           | Performance    | Hardware                                 | `target_feature` | `feature`   |
//! | -------------- | ---------------| ---------------------------------------- | ---------------- | ----------- |
//! | `Scalar`       | ≈140 million/s | All                                      | none             | none        |
//! | `x86::Sse41`   | ≈1 billion/s   | x86 with SSE4.1 (Penryn and above, 2008) | `sse4.1`         | `x86_sse41` |
//! 
//! ## Decoders
//! 
//! | Type           | Performance    | Hardware                                   | `target_feature` | `feature`   |
//! | -------------- | ---------------| ------------------------------------------ | ---------------- | ----------- |
//! | `Scalar`       | ≈140 million/s | All                                        | none             | none        |
//! | `x86::Ssse3`   | ≈2.7 billion/s | x86 with SSSE3 (Woodcrest and above, 2006) | `ssse3`          | `x86_ssse3` |
//! 
//! If you have a modern x86 and you want to use the all SIMD accelerated versions, you would use
//! `target_feature` in a compiler invocation like this:
//! 
//! ```sh
//! RUSTFLAGS='-C target-feature=+ssse3,+sse4.1' cargo ...
//! ```
//! 
//! Meanwhile, `feature`s for your dependency on this crate are specified
//! [in your project's Cargo.toml](http://doc.crates.io/manifest.html#the-features-section).
//! 
//! # Example
//!
//! ```
//! use stream_vbyte::*;
//!
//! let nums: Vec<u32> = (0..12_345).collect();
//! let mut encoded_data = Vec::new();
//! // make some space to encode into
//! encoded_data.resize(5 * nums.len(), 0x0);
//!
//! // use Scalar implementation that works on any hardware
//! let encoded_len = encode::<Scalar>(&nums, &mut encoded_data);
//! println!("Encoded {} u32s into {} bytes", nums.len(), encoded_len);
//!
//! // decode all the numbers at once
//! let mut decoded_nums = Vec::new();
//! decoded_nums.resize(nums.len(), 0);
//! let bytes_decoded = decode::<Scalar>(&encoded_data, nums.len(), &mut decoded_nums);
//! assert_eq!(nums, decoded_nums);
//! assert_eq!(encoded_len, bytes_decoded);
//!
//! // or maybe you want to skip some of the numbers while decoding
//! decoded_nums.clear();
//! decoded_nums.resize(nums.len(), 0);
//! let mut cursor = DecodeCursor::new(&encoded_data, nums.len());
//! cursor.skip(10_000);
//! let count = cursor.decode::<Scalar>(&mut decoded_nums);
//! assert_eq!(12_345 - 10_000, count);
//! assert_eq!(&nums[10_000..], &decoded_nums[0..count]);
//! assert_eq!(encoded_len, cursor.input_consumed());
//! ```
//!
//! # Panics
//!
//! If you use undersized slices (e.g. encoding 10 numbers into 5 bytes), you will get the normal
//! slice bounds check panics.
//!
//! # Safety
//!
//! SIMD code uses unsafe internally because many of the SIMD intrinsics are unsafe.
//!
//! The `Scalar` codec does not use unsafe.
//!
//!
extern crate byteorder;

use std::cmp;
use byteorder::{ByteOrder, LittleEndian};

mod tables;
mod cursor;
pub use cursor::DecodeCursor;

#[path="x86/x86.rs"]
pub mod x86;

/// Encode numbers to bytes.
pub trait Encoder {
    /// Encode complete quads of input numbers.
    ///
    /// `control_bytes` will be exactly as long as the number of complete 4-number quads in `input`.
    ///
    /// Control bytes are written to `control_bytes` and encoded numbers to `output`.
    ///
    /// Implementations may choose to encode fewer than the full provided input, but any writes done
    /// must be for full quads.
    ///
    /// Implementations must not write to `output` outside of the area that will be populated by
    /// encoded numbers when all control bytes are processed..
    ///
    /// Returns the number of numbers encoded and the number of bytes written to `output`.
    fn encode_quads(input: &[u32], control_bytes: &mut [u8], output: &mut [u8]) -> (usize, usize);
}

/// Decode bytes to numbers.
pub trait Decoder {
    /// Decode encoded numbers in complete quads.
    ///
    /// Only control bytes with 4 corresponding encoded numbers will be provided as input (i.e. no
    /// trailing partial quad).
    ///
    /// `control_bytes` are the control bytes that correspond to `encoded_nums`.
    ///
    /// `output` is the buffer to write decoded numbers into, and must be at least
    /// `control_bytes_to_decode * 4` in length.
    ///
    /// `control_bytes_to_decode * 4` may be greater than the number of control bytes remaining.
    ///
    /// Implementations may decode at most `control_bytes_to_decode` control bytes, but may decode
    /// fewer.
    ///
    /// Implementations must not write to `output` outside of the area that will be populated by
    /// decoded numbers when all control bytes are processed..
    ///
    /// Returns the number of numbers decoded into `output` and the number of bytes read from
    /// `encoded_nums`.
    fn decode_quads(control_bytes: &[u8], encoded_nums: &[u8], output: &mut [u32],
                    control_bytes_to_decode: usize) -> (usize, usize);
}

/// Encoder/Decoder that works on every platform, at the cost of speed compared to the SIMD accelerated versions.
pub struct Scalar;

impl Encoder for Scalar {
    // This implementation encodes all provided input numbers.
    fn encode_quads(input: &[u32], control_bytes: &mut [u8], encoded_nums: &mut [u8]) -> (usize, usize) {
        let mut bytes_written = 0;
        let mut nums_encoded = 0;

        for quads_encoded in 0..control_bytes.len() {
            let num0 = input[nums_encoded];
            let num1 = input[nums_encoded + 1];
            let num2 = input[nums_encoded + 2];
            let num3 = input[nums_encoded + 3];

            let len0 = encode_num_scalar(num0, &mut encoded_nums[bytes_written..]);
            let len1 = encode_num_scalar(num1, &mut encoded_nums[bytes_written + len0..]);
            let len2 = encode_num_scalar(num2, &mut encoded_nums[bytes_written + len0 + len1..]);
            let len3 = encode_num_scalar(num3, &mut encoded_nums[bytes_written + len0 + len1 + len2..]);

            // this is a few percent faster in my testing than using control_bytes.iter_mut()
            control_bytes[quads_encoded] = ((len0 - 1) | (len1 - 1) << 2 | (len2 - 1) << 4 | (len3 - 1) << 6) as u8;

            bytes_written += len0 + len1 + len2 + len3;
            nums_encoded += 4;
        }

        (nums_encoded, bytes_written)
    }
}

impl Decoder for Scalar {
    // This implementation decodes all provided encoded data.
    fn decode_quads(control_bytes: &[u8], encoded_nums: &[u8], output: &mut [u32],
                    control_bytes_to_decode: usize) -> (usize, usize) {
        debug_assert!(control_bytes_to_decode * 4 <= output.len());

        let mut bytes_read: usize = 0;
        let mut nums_decoded: usize = 0;
        let control_byte_limit = cmp::min(control_bytes.len(), control_bytes_to_decode);

        for &control_byte in control_bytes[0..control_byte_limit].iter() {
            let (len0, len1, len2, len3) = tables::DECODE_LENGTH_PER_NUM_TABLE[control_byte as usize];
            let len0 = len0 as usize;
            let len1 = len1 as usize;
            let len2 = len2 as usize;
            let len3 = len3 as usize;

            output[nums_decoded] = decode_num_scalar(len0, &encoded_nums[bytes_read..]);
            output[nums_decoded + 1] = decode_num_scalar(len1, &encoded_nums[bytes_read + len0..]);
            output[nums_decoded + 2] = decode_num_scalar(len2, &encoded_nums[bytes_read + len0 + len1..]);
            output[nums_decoded + 3] = decode_num_scalar(len3, &encoded_nums[bytes_read + len0 + len1 + len2..]);

            bytes_read += len0 + len1 + len2 + len3;
            nums_decoded += 4;
        }

        (nums_decoded, bytes_read)
    }
}

/// Encode the `input` slice into the `output` slice.
///
/// If you don't have specific knowledge of the input that would let you determine the encoded
/// length ahead of time, make `output` 5x as long as `input`. The worst-case encoded length is 4
/// bytes per `u32` plus another byte for every 4 `u32`s, including any trailing partial 4-some.
///
/// Returns the number of bytes written to the `output` slice.
pub fn encode<E: Encoder>(input: &[u32], output: &mut [u8]) -> usize {
    if input.len() == 0 {
        return 0;
    }

    let shape = encoded_shape(input.len());

    let (control_bytes, encoded_bytes) = output.split_at_mut(shape.control_bytes_len);

    let (nums_encoded, mut num_bytes_written) = E::encode_quads(&input[..],
                                                                    &mut control_bytes[0..shape.complete_control_bytes_len],
                                                                    &mut encoded_bytes[..]);

    // may be some input left, use Scalar to finish it
    let control_bytes_written = nums_encoded / 4;

    let (more_nums_encoded, more_bytes_written) =
        Scalar::encode_quads(&input[nums_encoded..],
                             &mut control_bytes[control_bytes_written..shape.complete_control_bytes_len],
                             &mut encoded_bytes[num_bytes_written..]);

    num_bytes_written += more_bytes_written;

    debug_assert_eq!(shape.complete_control_bytes_len * 4, nums_encoded + more_nums_encoded);

    // last control byte, if there were leftovers
    if shape.leftover_numbers > 0 {
        let mut control_byte = 0;
        let mut nums_encoded = shape.complete_control_bytes_len * 4;

        for i in 0..shape.leftover_numbers {
            let num = input[nums_encoded];
            let len = encode_num_scalar(num, &mut encoded_bytes[num_bytes_written..]);

            control_byte |= ((len - 1) as u8) << (i * 2);

            num_bytes_written += len;
            nums_encoded += 1;
        }
        control_bytes[shape.complete_control_bytes_len] = control_byte;
    }

    control_bytes.len() + num_bytes_written
}

/// Decode `count` numbers from `input`, writing them to `output`.
///
/// The `count` must be the same as the number of items originally encoded.
///
/// `output` must be at least of size 4, and must be large enough for all `count` numbers.
///
/// Returns the number of bytes read from `input`.
pub fn decode<D: Decoder>(input: &[u8], count: usize, output: &mut [u32]) -> usize {
    let mut cursor = DecodeCursor::new(&input, count);

    assert_eq!(count, cursor.decode::<D>(output), "output buffer was not large enough");

    cursor.input_consumed()
}

#[derive(Debug, PartialEq)]
struct EncodedShape {
    control_bytes_len: usize,
    complete_control_bytes_len: usize,
    leftover_numbers: usize
}

fn encoded_shape(count: usize) -> EncodedShape {
    EncodedShape {
        control_bytes_len: (count + 3) / 4,
        complete_control_bytes_len: count / 4,
        leftover_numbers: count % 4
    }
}

fn encode_num_scalar(num: u32, output: &mut [u8]) -> usize {
    // this will calculate 0_u32 as taking 0 bytes, so ensure at least 1 byte
    let len = cmp::max(1_usize, 4 - num.leading_zeros() as usize / 8);
    let mut buf = [0_u8; 4];
    LittleEndian::write_u32(&mut buf, num);

    for i in 0..len {
        output[i] = buf[i];
    }

    len
}

fn decode_num_scalar(len: usize, input: &[u8]) -> u32 {
    let mut buf = [0_u8; 4];
    &buf[0..len].copy_from_slice(&input[0..len]);

    LittleEndian::read_u32(&buf)
}


fn cumulative_encoded_len(control_bytes: &[u8]) -> usize {
    // sum could only overflow with an invalid encoding because the sum can be no larger than
    // the complete length of the encoded data, which fits in a usize
    control_bytes.iter()
        .map({ |&b| tables::DECODE_LENGTH_PER_QUAD_TABLE[b as usize] as usize })
        .sum()
}

#[cfg(test)]
mod tests;