1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
//! Index by utf16 code units.

use crate::byte_chunk::{ByteChunk, Chunk};

/// Counts the utf16 code units that would be in a string slice if it
/// were encoded as utf16.
///
/// Runs in O(N) time.
#[inline]
pub fn count(text: &str) -> usize {
    crate::chars::count_impl::<Chunk>(text.as_bytes())
        + count_surrogates_impl::<Chunk>(text.as_bytes())
}

/// Counts the utf16 surrogate pairs that would be in a string slice if
/// it were encoded as utf16.
///
/// Runs in O(N) time.
#[inline]
pub fn count_surrogates(text: &str) -> usize {
    count_surrogates_impl::<Chunk>(text.as_bytes())
}

/// Converts from byte-index to utf16-code-unit-index in a string slice.
///
/// If the byte is in the middle of a multi-byte char, returns the utf16
/// index of the char that the byte belongs to.
///
/// Any past-the-end index will return the one-past-the-end utf16 index.
///
/// Runs in O(N) time.
#[inline]
pub fn from_byte_idx(text: &str, byte_idx: usize) -> usize {
    let mut i = byte_idx.min(text.len());
    while !text.is_char_boundary(i) {
        i -= 1;
    }
    let slice = &text.as_bytes()[..i];
    crate::chars::count_impl::<Chunk>(slice) + count_surrogates_impl::<Chunk>(slice)
}

/// Converts from utf16-code-unit-index to byte-index in a string slice.
///
/// If the utf16 index is in the middle of a char, returns the bytes
/// index of the char that utf16 code unit belongs to.
///
/// Any past-the-end index will return the one-past-the-end byte index.
///
/// Runs in O(N) time.
#[inline]
pub fn to_byte_idx(text: &str, utf16_idx: usize) -> usize {
    to_byte_idx_impl::<Chunk>(text, utf16_idx)
}

//-------------------------------------------------------------

#[inline(always)]
fn to_byte_idx_impl<T: ByteChunk>(text: &str, utf16_idx: usize) -> usize {
    // Get `middle` so we can do more efficient chunk-based counting.
    // We can't use this to get `end`, however, because the start index of
    // `end` actually depends on the accumulating char counts during the
    // counting process.
    let (start, middle, _) = unsafe { text.as_bytes().align_to::<T>() };

    let mut byte_count = 0;
    let mut utf16_count = 0;

    // Take care of any unaligned bytes at the beginning.
    for byte in start.iter() {
        utf16_count += ((*byte & 0xC0) != 0x80) as usize + ((byte & 0xf0) == 0xf0) as usize;
        if utf16_count > utf16_idx {
            break;
        }
        byte_count += 1;
    }

    // Process chunks in the fast path.
    let mut chunks = middle;
    let mut max_round_len = utf16_idx.saturating_sub(utf16_count) / T::MAX_ACC;
    while max_round_len > 0 && !chunks.is_empty() {
        // Choose the largest number of chunks we can do this round
        // that will neither overflow `max_acc` nor blast past the
        // remaining line breaks we're looking for.
        let round_len = T::MAX_ACC.min(max_round_len).min(chunks.len());
        max_round_len -= round_len;
        let round = &chunks[..round_len];
        chunks = &chunks[round_len..];

        // Process the chunks in this round.
        let mut acc_inv_chars = T::zero();
        let mut acc_surrogates = T::zero();
        for chunk in round.iter() {
            acc_inv_chars = acc_inv_chars.add(chunk.bitand(T::splat(0xc0)).cmp_eq_byte(0x80));
            acc_surrogates = acc_surrogates.add(chunk.bitand(T::splat(0xf0)).cmp_eq_byte(0xf0));
        }
        utf16_count +=
            ((T::SIZE * round_len) - acc_inv_chars.sum_bytes()) + acc_surrogates.sum_bytes();
        byte_count += T::SIZE * round_len;
    }

    // Process chunks in the slow path.
    for chunk in chunks.iter() {
        let inv_chars = chunk.bitand(T::splat(0xc0)).cmp_eq_byte(0x80).sum_bytes();
        let surrogates = chunk.bitand(T::splat(0xf0)).cmp_eq_byte(0xf0).sum_bytes();
        let new_utf16_count = utf16_count + (T::SIZE - inv_chars) + surrogates;
        if new_utf16_count >= utf16_idx {
            break;
        }
        utf16_count = new_utf16_count;
        byte_count += T::SIZE;
    }

    // Take care of any unaligned bytes at the end.
    let end = &text.as_bytes()[byte_count..];
    for byte in end.iter() {
        utf16_count += ((*byte & 0xC0) != 0x80) as usize + ((byte & 0xf0) == 0xf0) as usize;
        if utf16_count > utf16_idx {
            break;
        }
        byte_count += 1;
    }

    byte_count
}

#[inline(always)]
fn count_surrogates_impl<T: ByteChunk>(text: &[u8]) -> usize {
    // We chop off the last three bytes, because all surrogate pairs are
    // four bytes in utf8, and so it prevents counting partial
    // characters.
    if text.len() <= 3 {
        return 0;
    }
    let text = &text[..(text.len() - 3)];

    // Get `middle` for more efficient chunk-based counting.
    let (start, middle, end) = unsafe { text.align_to::<T>() };

    let mut utf16_surrogate_count = 0;

    // Take care of unaligned bytes at the beginning.
    for byte in start.iter() {
        utf16_surrogate_count += ((byte & 0xf0) == 0xf0) as usize;
    }

    // Take care of the middle bytes in big chunks.
    for chunks in middle.chunks(T::MAX_ACC) {
        let mut acc = T::zero();
        for chunk in chunks.iter() {
            acc = acc.add(chunk.bitand(T::splat(0xf0)).cmp_eq_byte(0xf0));
        }
        utf16_surrogate_count += acc.sum_bytes();
    }

    // Take care of unaligned bytes at the end.
    for byte in end.iter() {
        utf16_surrogate_count += ((byte & 0xf0) == 0xf0) as usize;
    }

    utf16_surrogate_count
}

//=============================================================

#[cfg(test)]
mod tests {
    use super::*;

    // 45 bytes, 27 utf16 code units.
    const TEXT: &str = "Hel🐸lo world! こん🐸にち🐸🐸は!";

    #[test]
    fn count_01() {
        assert_eq!(27, count(TEXT));
    }

    #[test]
    fn count_surrogates_01() {
        assert_eq!(4, count_surrogates(TEXT));
    }

    #[test]
    fn from_byte_idx_01() {
        assert_eq!(0, from_byte_idx(TEXT, 0));

        assert_eq!(3, from_byte_idx(TEXT, 3));
        assert_eq!(3, from_byte_idx(TEXT, 4));
        assert_eq!(3, from_byte_idx(TEXT, 5));
        assert_eq!(3, from_byte_idx(TEXT, 6));
        assert_eq!(5, from_byte_idx(TEXT, 7));

        assert_eq!(7, from_byte_idx(TEXT, 9));

        assert_eq!(17, from_byte_idx(TEXT, 23));
        assert_eq!(17, from_byte_idx(TEXT, 24));
        assert_eq!(17, from_byte_idx(TEXT, 25));
        assert_eq!(17, from_byte_idx(TEXT, 26));
        assert_eq!(19, from_byte_idx(TEXT, 27));

        assert_eq!(21, from_byte_idx(TEXT, 33));
        assert_eq!(21, from_byte_idx(TEXT, 34));
        assert_eq!(21, from_byte_idx(TEXT, 35));
        assert_eq!(21, from_byte_idx(TEXT, 36));
        assert_eq!(23, from_byte_idx(TEXT, 37));
        assert_eq!(23, from_byte_idx(TEXT, 38));
        assert_eq!(23, from_byte_idx(TEXT, 39));
        assert_eq!(23, from_byte_idx(TEXT, 40));
        assert_eq!(25, from_byte_idx(TEXT, 41));

        assert_eq!(27, from_byte_idx(TEXT, 45));
        assert_eq!(27, from_byte_idx(TEXT, 46)); // Index 1 past the end.
    }

    #[test]
    fn to_byte_idx_01() {
        assert_eq!(to_byte_idx(TEXT, 0), 0);

        assert_eq!(3, to_byte_idx(TEXT, 3));
        assert_eq!(3, to_byte_idx(TEXT, 4));
        assert_eq!(7, to_byte_idx(TEXT, 5));

        assert_eq!(9, to_byte_idx(TEXT, 7));

        assert_eq!(23, to_byte_idx(TEXT, 17));
        assert_eq!(23, to_byte_idx(TEXT, 18));
        assert_eq!(27, to_byte_idx(TEXT, 19));

        assert_eq!(33, to_byte_idx(TEXT, 21));
        assert_eq!(33, to_byte_idx(TEXT, 22));
        assert_eq!(37, to_byte_idx(TEXT, 23));
        assert_eq!(37, to_byte_idx(TEXT, 24));
        assert_eq!(41, to_byte_idx(TEXT, 25));

        assert_eq!(45, to_byte_idx(TEXT, 27));
        assert_eq!(45, to_byte_idx(TEXT, 27)); // Index 1 past the end.
    }
}