1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
//! Direct Memory Access Engine

#![allow(dead_code)]

use core::fmt;
use core::marker::PhantomData;
use core::mem::MaybeUninit;
use core::ops::DerefMut;
use core::ptr;
use core::slice;
use core::sync::atomic::{compiler_fence, Ordering};
use embedded_dma::{StaticReadBuffer, StaticWriteBuffer};

use crate::rcc::AHB1;
use stable_deref_trait::StableDeref;

#[non_exhaustive]
#[derive(Debug)]
pub enum Error {
    Overrun,
    BufferError,
}

pub enum Event {
    HalfTransfer,
    TransferComplete,
}

pub trait CharacterMatch {
    /// Checks to see if the peripheral has detected a character match and
    /// clears the flag
    fn check_character_match(&mut self, clear: bool) -> bool;
}

pub trait ReceiverTimeout {
    /// Check to see if the peripheral has detected a
    /// receiver timeout and clears the flag
    fn check_receiver_timeout(&mut self, clear: bool) -> bool;
}

pub trait OperationError<O, E> {
    /// Check to see if the peripheral has detected some
    /// sort of error while performing an operation
    fn check_operation_error(&mut self) -> Result<O, E>;
}

/// Frame reader "worker", access and handling of frame reads is made through this structure.
pub struct FrameReader<BUFFER, PAYLOAD, const N: usize>
where
    BUFFER: Sized + StableDeref<Target = DMAFrame<N>> + DerefMut + 'static,
{
    buffer: BUFFER,
    payload: PAYLOAD,
    matching_character: u8,
}

impl<BUFFER, PAYLOAD, const N: usize> FrameReader<BUFFER, PAYLOAD, N>
where
    BUFFER: Sized + StableDeref<Target = DMAFrame<N>> + DerefMut + 'static,
{
    pub(crate) fn new(
        buffer: BUFFER,
        payload: PAYLOAD,
        matching_character: u8,
    ) -> FrameReader<BUFFER, PAYLOAD, N> {
        Self {
            buffer,
            payload,
            matching_character,
        }
    }
}

impl<BUFFER, PAYLOAD, CHANNEL, const N: usize> FrameReader<BUFFER, RxDma<PAYLOAD, CHANNEL>, N>
where
    BUFFER: Sized + StableDeref<Target = DMAFrame<N>> + DerefMut + 'static,
    PAYLOAD: CharacterMatch,
{
    /// Checks to see if the peripheral has detected a character match and
    /// clears the flag
    pub fn check_character_match(&mut self, clear: bool) -> bool {
        self.payload.payload.check_character_match(clear)
    }
}

impl<BUFFER, PAYLOAD, CHANNEL, const N: usize> FrameReader<BUFFER, RxDma<PAYLOAD, CHANNEL>, N>
where
    BUFFER: Sized + StableDeref<Target = DMAFrame<N>> + DerefMut + 'static,
    PAYLOAD: ReceiverTimeout,
{
    pub fn check_receiver_timeout(&mut self, clear: bool) -> bool {
        self.payload.payload.check_receiver_timeout(clear)
    }
}

impl<BUFFER, PAYLOAD, CHANNEL, const N: usize> FrameReader<BUFFER, RxDma<PAYLOAD, CHANNEL>, N>
where
    BUFFER: Sized + StableDeref<Target = DMAFrame<N>> + DerefMut + 'static,
{
    pub fn check_operation_error<O, E>(&mut self) -> Result<O, E>
    where
        PAYLOAD: OperationError<O, E>,
    {
        self.payload.payload.check_operation_error()
    }
}

/// Frame sender "worker", access and handling of frame transmissions is made through this
/// structure.
pub struct FrameSender<BUFFER, PAYLOAD, const N: usize>
where
    BUFFER: Sized + StableDeref<Target = DMAFrame<N>> + DerefMut + 'static,
{
    buffer: Option<BUFFER>,
    payload: PAYLOAD,
}

impl<BUFFER, PAYLOAD, const N: usize> FrameSender<BUFFER, PAYLOAD, N>
where
    BUFFER: Sized + StableDeref<Target = DMAFrame<N>> + DerefMut + 'static,
{
    pub(crate) fn new(payload: PAYLOAD) -> FrameSender<BUFFER, PAYLOAD, N> {
        Self {
            buffer: None,
            payload,
        }
    }
}

/// Data type for holding data frames for the Serial.
///
/// Internally used uninitialized storage, making this storage zero cost to create. It can also be
/// used with, for example, [`heapless::pool`] to create a pool of serial frames.
///
/// [`heapless::pool`]: https://docs.rs/heapless/0.5.3/heapless/pool/index.html
pub struct DMAFrame<const N: usize> {
    len: u16,
    buf: [MaybeUninit<u8>; N],
}

impl<const N: usize> fmt::Debug for DMAFrame<N> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{:?}", self.read())
    }
}

impl<const N: usize> fmt::Write for DMAFrame<N> {
    fn write_str(&mut self, s: &str) -> fmt::Result {
        let free = self.free();

        if s.len() > free {
            Err(fmt::Error)
        } else {
            self.write_slice(s.as_bytes());
            Ok(())
        }
    }
}

impl<const N: usize> Default for DMAFrame<N> {
    fn default() -> Self {
        Self::new()
    }
}

impl<const N: usize> DMAFrame<N> {
    const INIT: MaybeUninit<u8> = MaybeUninit::uninit();
    /// Creates a new node for the Serial DMA
    #[inline]
    pub const fn new() -> Self {
        // Create an uninitialized array of `MaybeUninit<u8>`.
        Self {
            len: 0,
            buf: [Self::INIT; N],
        }
    }

    /// Gives a `&mut [u8]` slice to write into with the maximum size, the `commit` method
    /// must then be used to set the actual number of bytes written.
    ///
    /// Note that this function internally first zeros the uninitialized part of the node's buffer.
    pub fn write(&mut self) -> &mut [u8] {
        // Initialize remaining memory with a safe value
        for elem in &mut self.buf[self.len as usize..] {
            *elem = MaybeUninit::new(0);
        }

        self.len = self.max_len() as u16;

        // NOTE(unsafe): This is safe as the operation above set the entire buffer to a valid state
        unsafe { slice::from_raw_parts_mut(self.buf.as_mut_ptr() as *mut _, self.max_len()) }
    }

    /// Used to shrink the current size of the frame, used in conjunction with `write`.
    #[inline]
    pub fn commit(&mut self, shrink_to: usize) {
        // Only shrinking is allowed to remain safe with the `MaybeUninit`
        if shrink_to < self.len as _ {
            self.len = shrink_to as _;
        }
    }

    /// Gives an uninitialized `&mut [MaybeUninit<u8>]` slice to write into, the `set_len` method
    /// must then be used to set the actual number of bytes written.
    #[inline]
    pub fn write_uninit(&mut self) -> &mut [MaybeUninit<u8>; N] {
        &mut self.buf
    }

    /// Used to set the current size of the frame, used in conjunction with `write_uninit` to have an
    /// interface for uninitialized memory. Use with care!
    ///
    /// # Safety
    ///
    /// NOTE(unsafe): This must be set so that the final buffer is only referencing initialized
    /// memory.
    #[inline]
    pub unsafe fn set_len(&mut self, len: usize) {
        assert!(len <= self.max_len());
        self.len = len as _;
    }

    /// Used to write data into the node, and returns how many bytes were written from `buf`.
    ///
    /// If the node is already partially filled, this will continue filling the node.
    pub fn write_slice(&mut self, buf: &[u8]) -> usize {
        let count = buf.len().min(self.free());

        // Used to write data into the `MaybeUninit`
        // NOTE(unsafe): Safe based on the size check above
        unsafe {
            ptr::copy_nonoverlapping(
                buf.as_ptr(),
                (self.buf.as_mut_ptr() as *mut u8).add(self.len.into()),
                count,
            );
        }

        self.len += count as u16;

        count
    }

    /// Clear the node of all data making it empty
    #[inline]
    pub fn clear(&mut self) {
        self.len = 0;
    }

    /// Returns a readable slice which maps to the buffers internal data
    #[inline]
    pub fn read(&self) -> &[u8] {
        // NOTE(unsafe): Safe as it uses the internal length of valid data
        unsafe { slice::from_raw_parts(self.buf.as_ptr() as *const _, self.len as usize) }
    }

    /// Returns a readable mutable slice which maps to the buffers internal data
    #[inline]
    pub fn read_mut(&mut self) -> &mut [u8] {
        // NOTE(unsafe): Safe as it uses the internal length of valid data
        unsafe { slice::from_raw_parts_mut(self.buf.as_mut_ptr() as *mut _, self.len as usize) }
    }

    /// Reads how many bytes are available
    #[inline]
    pub fn len(&self) -> usize {
        self.len as usize
    }

    /// Reads how many bytes are free
    #[inline]
    pub fn free(&self) -> usize {
        self.max_len() - self.len as usize
    }

    /// Get the max length of the frame
    #[inline]
    pub fn max_len(&self) -> usize {
        N
    }

    /// Checks if the frame is empty
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    #[inline]
    pub(crate) unsafe fn buffer_address_for_dma(&self) -> u32 {
        self.buf.as_ptr() as u32
    }

    #[inline]
    pub(crate) fn buffer_as_ptr(&self) -> *const MaybeUninit<u8> {
        self.buf.as_ptr()
    }

    #[inline]
    pub(crate) fn buffer_as_mut_ptr(&mut self) -> *mut MaybeUninit<u8> {
        self.buf.as_mut_ptr()
    }
}

impl<const N: usize> AsRef<[u8]> for DMAFrame<N> {
    #[inline]
    fn as_ref(&self) -> &[u8] {
        self.read()
    }
}

pub struct CircBuffer<BUFFER, PAYLOAD>
where
    BUFFER: 'static,
{
    buffer: &'static mut BUFFER,
    payload: PAYLOAD,
    read_index: usize,
    write_previous: usize,
}

impl<BUFFER, PAYLOAD> CircBuffer<BUFFER, PAYLOAD>
where
    &'static mut BUFFER: StaticWriteBuffer,
    BUFFER: 'static,
{
    pub(crate) fn new(buf: &'static mut BUFFER, payload: PAYLOAD) -> Self {
        CircBuffer {
            buffer: buf,
            payload,
            read_index: 0,
            write_previous: 0,
        }
    }
}

pub trait DmaExt {
    type Channels;

    fn split(self, ahb: &mut AHB1) -> Self::Channels;
}

pub trait TransferPayload {
    fn start(&mut self);
    fn stop(&mut self);
}

pub struct Transfer<MODE, BUFFER, PAYLOAD>
where
    PAYLOAD: TransferPayload,
{
    _mode: PhantomData<MODE>,
    buffer: BUFFER,
    payload: PAYLOAD,
}

impl<BUFFER, PAYLOAD> Transfer<R, BUFFER, PAYLOAD>
where
    PAYLOAD: TransferPayload,
{
    pub(crate) fn r(buffer: BUFFER, payload: PAYLOAD) -> Self {
        Transfer {
            _mode: PhantomData,
            buffer,
            payload,
        }
    }
}

impl<BUFFER, PAYLOAD> Transfer<W, BUFFER, PAYLOAD>
where
    PAYLOAD: TransferPayload,
{
    pub(crate) fn w(buffer: BUFFER, payload: PAYLOAD) -> Self {
        Transfer {
            _mode: PhantomData,
            buffer,
            payload,
        }
    }
}

impl<BUFFER, PAYLOAD> Transfer<RW, BUFFER, PAYLOAD>
where
    PAYLOAD: TransferPayload,
{
    pub(crate) fn rw(buffer: BUFFER, payload: PAYLOAD) -> Self {
        Transfer {
            _mode: PhantomData,
            buffer,
            payload,
        }
    }
}

impl<MODE, BUFFER, PAYLOAD> Drop for Transfer<MODE, BUFFER, PAYLOAD>
where
    PAYLOAD: TransferPayload,
{
    fn drop(&mut self) {
        self.payload.stop();
        compiler_fence(Ordering::SeqCst);
    }
}

impl<MODE, BUFFER, PAYLOAD> Transfer<MODE, BUFFER, PAYLOAD>
where
    PAYLOAD: TransferPayload,
{
    pub(crate) fn extract_inner_without_drop(self) -> (BUFFER, PAYLOAD) {
        // `Transfer` needs to have a `Drop` implementation, because we accept
        // managed buffers that can free their memory on drop. Because of that
        // we can't move out of the `Transfer`'s fields, so we use `ptr::read`
        // and `mem::forget`.
        //
        // NOTE(unsafe) There is no panic branch between getting the resources
        // and forgetting `self`.
        unsafe {
            // We cannot use mem::replace as we do not have valid objects to replace with
            let buffer = ptr::read(&self.buffer);
            let payload = ptr::read(&self.payload);
            core::mem::forget(self);
            (buffer, payload)
        }
    }
}

/// Read transfer
pub struct R;

/// Write transfer
pub struct W;

/// Read/Write transfer
pub struct RW;

macro_rules! for_all_pairs {
    ($mac:ident: $($x:ident)*) => {
        // Duplicate the list
        for_all_pairs!(@inner $mac: $($x)*; $($x)*);
    };

    // The end of iteration: we exhausted the list
    (@inner $mac:ident: ; $($x:ident)*) => {};

    // The head/tail recursion: pick the first element of the first list
    // and recursively do it for the tail.
    (@inner $mac:ident: $head:ident $($tail:ident)*; $($x:ident)*) => {
        $(
            $mac!($head $x);
        )*
        for_all_pairs!(@inner $mac: $($tail)*; $($x)*);
    };
}

macro_rules! rx_tx_channel_mapping {
    ($CH_A:ident $CH_B:ident) => {
        impl<BUFFER, PAYLOAD> Transfer<RW, BUFFER, RxTxDma<PAYLOAD, $CH_A, $CH_B>>
        where
            RxTxDma<PAYLOAD, $CH_A, $CH_B>: TransferPayload,
        {
            pub fn is_done(&self) -> bool {
                !self.payload.rx_channel.in_progress() && !self.payload.tx_channel.in_progress()
            }

            pub fn wait(mut self) -> (BUFFER, RxTxDma<PAYLOAD, $CH_A, $CH_B>) {
                // XXX should we check for transfer errors here?
                // The manual says "A DMA transfer error can be generated by reading
                // from or writing to a reserved address space". I think it's impossible
                // to get to that state with our type safe API and *safe* Rust.
                while !self.is_done() {}

                self.payload.stop();

                // TODO can we weaken this compiler barrier?
                // NOTE(compiler_fence) operations on `buffer` should not be reordered
                // before the previous statement, which marks the DMA transfer as done
                atomic::compiler_fence(Ordering::SeqCst);

                // `Transfer` has a `Drop` implementation because we accept
                // managed buffers that can free their memory on drop. Because of that
                // we can't move out of the `Transfer`'s fields directly.
                self.extract_inner_without_drop()
            }
        }

        impl<BUFFER, PAYLOAD> Transfer<RW, BUFFER, RxTxDma<PAYLOAD, $CH_A, $CH_B>>
        where
            RxTxDma<PAYLOAD, $CH_A, $CH_B>: TransferPayload,
        {
            pub fn peek<T>(&self) -> &[T]
            where
                BUFFER: AsRef<[T]>,
            {
                let pending = self.payload.rx_channel.get_cndtr() as usize;

                let capacity = self.buffer.as_ref().len();

                &self.buffer.as_ref()[..(capacity - pending)]
            }
        }
    };
}

macro_rules! dma {
    ($($DMAX:ident: ($dmaX:ident, {
        $($CX:ident: (
            $ccrX:ident,
            $CCRX:ident,
            $cndtrX:ident,
            $CNDTRX:ident,
            $cparX:ident,
            $CPARX:ident,
            $cmarX:ident,
            $CMARX:ident,
            $htifX:ident,
            $tcifX:ident,
            $chtifX:ident,
            $ctcifX:ident,
            $cgifX:ident,
            $teifX:ident,
            $cteifX:ident
        ),)+
    }),)+) => {
        $(
            pub mod $dmaX {
                use core::sync::atomic::{self, Ordering};
                use crate::stm32::{$DMAX, dma1};
                use core::ops::DerefMut;
                use core::ptr;
                use stable_deref_trait::StableDeref;

                use crate::dma::{CircBuffer, FrameReader, FrameSender, DMAFrame, DmaExt, Error, Event, Transfer, W, R, RW, RxDma, RxTxDma, TxDma, TransferPayload};
                use crate::rcc::{AHB1, Enable};

                #[allow(clippy::manual_non_exhaustive)]
                pub struct Channels((), $(pub $CX),+);

                for_all_pairs!(rx_tx_channel_mapping: $($CX)+);

                $(
                    /// A singleton that represents a single DMAx channel (channel X in this case)
                    ///
                    /// This singleton has exclusive access to the registers of the DMAx channel X
                    pub struct $CX;

                    impl $CX {
                        /// Associated peripheral `address`
                        ///
                        /// `inc` indicates whether the address will be incremented after every transfer
                        #[inline]
                        pub fn set_peripheral_address(&mut self, address: u32, inc: bool) {
                            self.cpar().write(|w|
                                unsafe { w.pa().bits(address) }
                            );
                            self.ccr().modify(|_, w| w.pinc().bit(inc) );
                        }

                        /// `address` where from/to data will be read/write
                        ///
                        /// `inc` indicates whether the address will be incremented after every transfer
                        #[inline]
                        pub fn set_memory_address(&mut self, address: u32, inc: bool) {
                            self.cmar().write(|w|
                                unsafe { w.ma().bits(address) }
                            );
                            self.ccr().modify(|_, w| w.minc().bit(inc) );
                        }

                        /// The amount of transfers that makes up one transaction
                        #[inline]
                        pub fn set_transfer_length(&mut self, len: u16) {
                            self.cndtr().write(|w| w.ndt().bits(len));
                        }

                        /// Starts the DMA transfer
                        #[inline]
                        pub fn start(&mut self) {
                            self.ccr().modify(|_, w| w.en().set_bit() );
                        }

                        /// Stops the DMA transfer
                        #[inline]
                        pub fn stop(&mut self) {
                            self.ifcr().write(|w| w.$cgifX().set_bit());
                            self.ccr().modify(|_, w| w.en().clear_bit() );
                        }

                        /// Returns `true` if there's a transfer in progress
                        #[inline]
                        pub fn in_progress(&self) -> bool {
                            self.isr().$tcifX().bit_is_clear()
                        }

                        #[inline]
                        pub fn listen(&mut self, event: Event) {
                            match event {
                                Event::HalfTransfer => self.ccr().modify(|_, w| w.htie().set_bit()),
                                Event::TransferComplete => {
                                    self.ccr().modify(|_, w| w.tcie().set_bit())
                                }
                            }
                        }

                        #[inline]
                        pub fn unlisten(&mut self, event: Event) {
                            match event {
                                Event::HalfTransfer => {
                                    self.ccr().modify(|_, w| w.htie().clear_bit())
                                },
                                Event::TransferComplete => {
                                    self.ccr().modify(|_, w| w.tcie().clear_bit())
                                }
                            }
                        }

                        #[inline]
                        pub(crate) fn isr(&self) -> dma1::isr::R {
                            // NOTE(unsafe) atomic read with no side effects
                            unsafe { (*$DMAX::ptr()).isr.read() }
                        }

                        #[inline]
                        pub(crate) fn ifcr(&self) -> &dma1::IFCR {
                            unsafe { &(*$DMAX::ptr()).ifcr }
                        }

                        #[inline]
                        pub(crate) fn ccr(&mut self) -> &dma1::$CCRX {
                            unsafe { &(*$DMAX::ptr()).$ccrX }
                        }

                        #[inline]
                        pub(crate) fn cndtr(&mut self) -> &dma1::$CNDTRX {
                            unsafe { &(*$DMAX::ptr()).$cndtrX }
                        }

                        #[inline]
                        pub(crate) fn cpar(&mut self) -> &dma1::$CPARX {
                            unsafe { &(*$DMAX::ptr()).$cparX }
                        }

                        #[inline]
                        pub(crate) fn cmar(&mut self) -> &dma1::$CMARX {
                            unsafe { &(*$DMAX::ptr()).$cmarX }
                        }

                        #[cfg(not(any(
                            // feature = "stm32l4p5",
                            // feature = "stm32l4q5",
                            // feature = "stm32l4r5",
                            // feature = "stm32l4s5",
                            // feature = "stm32l4r7",
                            // feature = "stm32l4s7",
                            feature = "stm32l4r9",
                            feature = "stm32l4s9"
                        )))]
                        #[inline]
                        pub(crate) fn cselr(&mut self) -> &dma1::CSELR {
                            unsafe { &(*$DMAX::ptr()).cselr }
                        }

                        #[inline]
                        pub(crate) fn get_cndtr(&self) -> u32 {
                            // NOTE(unsafe) atomic read with no side effects
                            unsafe { (*$DMAX::ptr()).$cndtrX.read().bits() }
                        }

                    }

                    impl<BUFFER, PAYLOAD, const N: usize> FrameSender<BUFFER, TxDma<PAYLOAD, $CX>, N>
                    where
                        BUFFER: Sized + StableDeref<Target = DMAFrame<N>> + DerefMut + 'static,
                        TxDma<PAYLOAD, $CX>: TransferPayload,
                    {
                        /// This method should be called in the transfer complete interrupt of the
                        /// DMA, will return the sent frame if the transfer was truly completed.
                        pub fn transfer_complete_interrupt(
                            &mut self,
                        ) -> Option<BUFFER> {

                            // Clear ISR flag (Transfer Complete)
                            if !self.payload.channel.in_progress() {
                                self.payload.channel.ifcr().write(|w| w.$ctcifX().set_bit());
                            } else {
                                // The old transfer is not complete
                                return None;
                            }

                            self.payload.channel.stop();

                            // NOTE(compiler_fence) operations on the DMA should not be reordered
                            // before the next statement, takes the buffer from the DMA transfer.
                            atomic::compiler_fence(Ordering::SeqCst);

                            // Return the old buffer for the user to do what they want with it
                            self.buffer.take()
                        }

                        /// Returns `true` if there is an ongoing transfer.
                        #[inline]
                        pub fn ongoing_transfer(&self) -> bool {
                            self.buffer.is_some()
                        }

                        /// Send a frame. Will return `Err(frame)` if there was already an ongoing
                        /// transaction or if the buffer has not been read out.
                        pub fn send(
                            &mut self,
                            frame: BUFFER,
                        ) -> Result<(), BUFFER> {
                            if self.ongoing_transfer() {
                                // The old transfer is not complete
                                return Err(frame);
                            }

                            let new_buf = &*frame;
                            self.payload.channel.set_memory_address(new_buf.buffer_as_ptr() as u32, true);
                            self.payload.channel.set_transfer_length(new_buf.len() as u16);

                            // If there has been an error, clear the error flag to let the next
                            // transaction start
                            if self.payload.channel.isr().$teifX().bit_is_set() {
                                self.payload.channel.ifcr().write(|w| w.$cteifX().set_bit());
                            }

                            // NOTE(compiler_fence) operations on `buffer` should not be reordered after
                            // the next statement, which starts the DMA transfer
                            atomic::compiler_fence(Ordering::Release);

                            self.payload.channel.start();

                            self.buffer = Some(frame);

                            Ok(())
                        }
                    }

                    impl<BUFFER, PAYLOAD, const N: usize> FrameReader<BUFFER, RxDma<PAYLOAD, $CX>, N>
                    where
                        BUFFER: Sized + StableDeref<Target = DMAFrame<N>> + DerefMut + 'static,
                        RxDma<PAYLOAD, $CX>: TransferPayload,
                    {
                        /// This function should be called from the transfer complete interrupt of
                        /// the corresponding DMA channel.
                        ///
                        /// Returns the full buffer received by the USART.
                        #[inline]
                        pub fn transfer_complete_interrupt(&mut self, next_frame: BUFFER) -> BUFFER {
                            self.internal_interrupt(next_frame, false)
                        }

                        /// This function should be called from the character match interrupt of
                        /// the corresponding USART
                        ///
                        /// Returns the buffer received by the USART, including the matching
                        /// character.
                        #[inline]
                        pub fn character_match_interrupt(&mut self, next_frame: BUFFER) -> BUFFER {
                            self.internal_interrupt(next_frame, true)
                        }

                        /// This function should be called from the receiver timeout interrupt of
                        /// the corresponding USART
                        ///
                        /// Returns the buffer received by the USART.
                        #[inline]
                        pub fn receiver_timeout_interrupt(&mut self, next_frame: BUFFER) -> BUFFER {
                            self.internal_interrupt(next_frame, false)
                        }

                        fn internal_interrupt(
                            &mut self,
                            mut next_frame: BUFFER,
                            character_match_interrupt: bool,
                        ) -> BUFFER {
                            let old_buf = &mut *self.buffer;
                            let new_buf = &mut *next_frame;
                            new_buf.clear();

                            // Clear ISR flag (Transfer Complete)
                            if !self.payload.channel.in_progress() {
                                self.payload.channel.ifcr().write(|w| w.$ctcifX().set_bit());
                            } else if character_match_interrupt {
                                // 1. If DMA not done and there was a character match interrupt,
                                // let the DMA flush a little and then halt transfer.
                                //
                                // This is to alleviate the race condition between the character
                                // match interrupt and the DMA memory transfer.
                                let left_in_buffer = self.payload.channel.get_cndtr() as usize;

                                for _ in 0..5 {
                                    let now_left = self.payload.channel.get_cndtr() as usize;

                                    if left_in_buffer - now_left >= 4 {
                                        // We have gotten 4 extra characters flushed
                                        break;
                                    }
                                }
                            }

                            self.payload.channel.stop();

                            // NOTE(compiler_fence) operations on `buffer` should not be reordered after
                            // the next statement, which starts a new DMA transfer
                            atomic::compiler_fence(Ordering::SeqCst);

                            let left_in_buffer = self.payload.channel.get_cndtr() as usize;
                            let got_data_len = old_buf.max_len() - left_in_buffer; // How many transfers were completed = how many bytes are available
                            unsafe {
                                old_buf.set_len(got_data_len);
                            }

                            // 2. Check DMA race condition by finding matched character, and that
                            //    the length is larger than 0
                            let len = if character_match_interrupt && got_data_len > 0 {
                                let search_buf = old_buf.read();

                                // Search from the end
                                let ch = self.matching_character;
                                if let Some(pos) = search_buf.iter().rposition(|&x| x == ch) {
                                    pos+1
                                } else {
                                    // No character match found
                                    0
                                }
                            } else {
                                old_buf.len()
                            };

                            // 3. Start DMA again
                            let diff = if len < got_data_len {
                                // We got some extra characters in the from the new frame, move
                                // them into the new buffer
                                let diff = got_data_len - len;

                                let new_buf_ptr = new_buf.buffer_as_mut_ptr();
                                let old_buf_ptr = old_buf.buffer_as_ptr();

                                // new_buf[0..diff].copy_from_slice(&old_buf[len..got_data_len]);
                                unsafe {
                                    ptr::copy_nonoverlapping(old_buf_ptr.add(len), new_buf_ptr, diff);
                                }

                                diff
                            } else {
                                0
                            };

                            self.payload.channel.set_memory_address(unsafe { new_buf.buffer_as_ptr().add(diff) } as u32, true);
                            self.payload.channel.set_transfer_length((new_buf.max_len() - diff) as u16);
                            unsafe { old_buf.set_len(got_data_len - diff) };
                            let received_buffer = core::mem::replace(&mut self.buffer, next_frame);

                            // NOTE(compiler_fence) operations on `buffer` should not be reordered after
                            // the next statement, which starts the DMA transfer
                            atomic::compiler_fence(Ordering::Release);

                            self.payload.channel.start();

                            // 4. Return full frame
                            received_buffer
                        }
                    }

                    impl<B, PAYLOAD> CircBuffer<B, RxDma<PAYLOAD, $CX>>
                    where
                        RxDma<PAYLOAD, $CX>: TransferPayload,
                    {
                        /// Determines if the write index passed the given `mark` when it moved
                        /// from `previous` to `current` with wrapping behaviour at `wrap`.
                        /// When `current` reaches `mark` (`current == mark`), this method already
                        /// returns `true`.
                        fn passed_mark(&self, mut previous: usize, mut current: usize, mark: usize, wrap: usize) -> bool {
                            // We have three indexes mark (m), previous (p) and current (c) so
                            // there are fac(3)=6 possibilities how those can be ordered. For both
                            // cases (passed, !passed), there are three wrapped variations each:
                            // !passed: 1. m <= p <= c, 2. c < m <= p, 3. p <= c < m
                            //  passed: 1. m <= c <  p, 2. p < m <= c, 3. c <  p < m
                            // By enforcing p >= m and c >= m (reverting the wrap), we only have to
                            // check the first case.
                            if previous < mark {
                                previous += wrap;
                            }
                            if current < mark {
                                current += wrap;
                            }
                            current < previous && current >= mark
                        }

                        /// Reads and removes the available contents of the dma buffer into `buf`.
                        /// Returns `Err(Error::Overrun)` if an overrun is detected but there is no
                        /// guarantee that every overrun can be detected.
                        /// On success, returns the number of words written to `buf`.
                        pub fn read<T>(&mut self, buf: &mut [T]) -> Result<usize, Error>
                            where
                            B: AsRef<[T]>,
                            T: Copy,
                        {
                            // We do our best to figure out when an overrun occurred but without
                            // risking false positives.
                            //
                            // One possibility to detect an overrun is by examining the read- and
                            // write-indexes: If the write-index passes the read-index, that is an
                            // overrun condition because an unread value is overwritten. This check
                            // can fail if the write-index passed the read-index but due to
                            // wrapping, this can not be detected. For example, this can happen if
                            // `capacity` many words were written since the last read which looks
                            // like no word has been written.
                            //
                            // Another possibility to detect overruns is by checking the
                            // TransferComplete and HalfTransferComplete flags. For example, the
                            // TransferComplete flag is set when the write-index wraps around so
                            // whenever we encounter this flag the new write-index should be
                            // smaller than the previous one. If it is not, more than `capacity`
                            // many words must have been written which definitely must be an
                            // overrun. Another possibility to formulate this condition is to check
                            // wheter the write-index passed index 0. A similar condition can be
                            // formulated for the HalfTransferComplete flag, i.e. check whether the
                            // write-index passed index capacity/2.
                            //
                            // Unfortunately, even both checks together can not guarantee that we
                            // detect all overruns.
                            // Example:
                            // read = 2, write = 3, 2*capacity-2 words written => write = 1.
                            let capacity = self.buffer.as_ref().len();
                            // We read the flags before reading the current write-index because if
                            // another word is written between those two accesses, this ordering
                            // prevents a false positive overrun error.
                            let isr = self.payload.channel.isr();
                            let half_complete_flag = isr.$htifX().bit_is_set();
                            if half_complete_flag {
                                self.payload.channel.ifcr().write(|w| w.$chtifX().set_bit());
                            }
                            let transfer_complete_flag = isr.$tcifX().bit_is_set();
                            if transfer_complete_flag {
                                self.payload.channel.ifcr().write(|w| w.$ctcifX().set_bit());
                            }
                            let write_current = capacity - self.payload.channel.get_cndtr() as usize;
                            // Copy the data before examining the overrun conditions. If the
                            // overrun happens shortly after the flags and write-index were read,
                            // we can not detect it anyways. So we can only hope that we have
                            // already read the word(s) that will be overwritten.
                            let available = if write_current >= self.read_index {
                                write_current - self.read_index
                            } else {
                                capacity + write_current - self.read_index
                            };
                            let read_len = core::cmp::min(available, buf.len());
                            if self.read_index + read_len <= capacity {
                                // non-wrapping read
                                buf[..read_len].copy_from_slice(&self.buffer.as_ref()[self.read_index..self.read_index+read_len]);
                            } else {
                                // wrapping read
                                let first_read_len = capacity - self.read_index;
                                let second_read_len = read_len - first_read_len;
                                buf[..first_read_len].copy_from_slice(&self.buffer.as_ref()[self.read_index..]);
                                buf[first_read_len..read_len].copy_from_slice(&self.buffer.as_ref()[..second_read_len]);
                            }
                            // For checking the overrun conditions, it is important that we use the
                            // old read_index so do not increment it yet but check overrun
                            // conditions first.
                            // For odd buffer sizes, the half-complete flag is set at
                            // ceil(capacity/2).
                            let overrun =
                                self.passed_mark(self.write_previous, write_current, self.read_index, capacity)
                                || (transfer_complete_flag && !self.passed_mark(self.write_previous, write_current, 0, capacity))
                                || (half_complete_flag && !self.passed_mark(self.write_previous, write_current, (capacity+1)/2, capacity));
                            self.write_previous = write_current;
                            if overrun {
                                self.read_index = write_current;
                                Err(Error::Overrun)
                            } else {
                                self.read_index += read_len;
                                if self.read_index >= capacity {
                                    self.read_index -= capacity;
                                }
                                Ok(read_len)
                            }
                        }

                        /// Stops the transfer and returns the underlying buffer and RxDma
                        pub fn stop(mut self) -> (&'static mut B, RxDma<PAYLOAD, $CX>) {
                            self.payload.stop();

                            (self.buffer, self.payload)
                        }
                    }

                    impl<BUFFER, PAYLOAD> Transfer<W, BUFFER, RxDma<PAYLOAD, $CX>>
                    where
                        RxDma<PAYLOAD, $CX>: TransferPayload,
                    {
                        pub fn is_done(&self) -> bool {
                            !self.payload.channel.in_progress()
                        }

                        pub fn wait(mut self) -> (BUFFER, RxDma<PAYLOAD, $CX>) {
                            // XXX should we check for transfer errors here?
                            // The manual says "A DMA transfer error can be generated by reading
                            // from or writing to a reserved address space". I think it's impossible
                            // to get to that state with our type safe API and *safe* Rust.
                            while !self.is_done() {}

                            self.payload.stop();

                            // TODO can we weaken this compiler barrier?
                            // NOTE(compiler_fence) operations on `buffer` should not be reordered
                            // before the previous statement, which marks the DMA transfer as done
                            atomic::compiler_fence(Ordering::SeqCst);

                            // `Transfer` has a `Drop` implementation because we accept
                            // managed buffers that can free their memory on drop. Because of that
                            // we can't move out of the `Transfer`'s fields directly.
                            self.extract_inner_without_drop()
                        }
                    }

                    impl<BUFFER, PAYLOAD> Transfer<R, BUFFER, TxDma<PAYLOAD, $CX>>
                    where
                        TxDma<PAYLOAD, $CX>: TransferPayload,
                    {
                        pub fn is_done(&self) -> bool {
                            !self.payload.channel.in_progress()
                        }

                        pub fn wait(mut self) -> (BUFFER, TxDma<PAYLOAD, $CX>) {
                            // XXX should we check for transfer errors here?
                            // The manual says "A DMA transfer error can be generated by reading
                            // from or writing to a reserved address space". I think it's impossible
                            // to get to that state with our type safe API and *safe* Rust.
                            while !self.is_done() {}

                            self.payload.stop();

                            // TODO can we weaken this compiler barrier?
                            // NOTE(compiler_fence) operations on `buffer` should not be reordered
                            // before the previous statement, which marks the DMA transfer as done
                            atomic::compiler_fence(Ordering::SeqCst);

                            // `Transfer` has a `Drop` implementation because we accept
                            // managed buffers that can free their memory on drop. Because of that
                            // we can't move out of the `Transfer`'s fields directly.
                            self.extract_inner_without_drop()
                        }
                    }

                    impl<BUFFER, PAYLOAD> Transfer<W, BUFFER, RxDma<PAYLOAD, $CX>>
                    where
                        RxDma<PAYLOAD, $CX>: TransferPayload,
                    {
                        pub fn peek<T>(&self) -> &[T]
                        where
                            BUFFER: AsRef<[T]>,
                        {
                            let pending = self.payload.channel.get_cndtr() as usize;

                            let capacity = self.buffer.as_ref().len();

                            &self.buffer.as_ref()[..(capacity - pending)]
                        }
                    }

                    impl<BUFFER, PAYLOAD> Transfer<R, BUFFER, TxDma<PAYLOAD, $CX>>
                    where
                        TxDma<PAYLOAD, $CX>: TransferPayload,
                    {
                        pub fn peek<T>(&self) -> &[T]
                        where
                            BUFFER: AsRef<[T]>
                        {
                            let pending = self.payload.channel.get_cndtr() as usize;

                            let capacity = self.buffer.as_ref().len();

                            &self.buffer.as_ref()[..(capacity - pending)]
                        }
                    }
                )+

                impl DmaExt for $DMAX {
                    type Channels = Channels;

                    fn split(self, ahb: &mut AHB1) -> Channels {
                        <$DMAX>::enable(ahb);

                        #[cfg(any(
                            // feature = "stm32l4p5",
                            // feature = "stm32l4q5",
                            // feature = "stm32l4r5",
                            // feature = "stm32l4s5",
                            // feature = "stm32l4r7",
                            // feature = "stm32l4s7",
                            feature = "stm32l4r9",
                            feature = "stm32l4s9"
                        ))]
                        ahb.enr().modify(|_, w| w.dmamux1en().set_bit());

                        // reset the DMA control registers (stops all on-going transfers)
                        $(
                            self.$ccrX.reset();
                        )+

                        Channels((), $($CX { }),+)
                    }
                }
            }
        )+
    }
}

dma! {
    DMA1: (dma1, {
        C1: (
            ccr1, CCR1,
            cndtr1, CNDTR1,
            cpar1, CPAR1,
            cmar1, CMAR1,
            htif1, tcif1,
            chtif1, ctcif1, cgif1,
            teif1, cteif1
        ),
        C2: (
            ccr2, CCR2,
            cndtr2, CNDTR2,
            cpar2, CPAR2,
            cmar2, CMAR2,
            htif2, tcif2,
            chtif2, ctcif2, cgif2,
            teif2, cteif2
        ),
        C3: (
            ccr3, CCR3,
            cndtr3, CNDTR3,
            cpar3, CPAR3,
            cmar3, CMAR3,
            htif3, tcif3,
            chtif3, ctcif3, cgif3,
            teif3, cteif3
        ),
        C4: (
            ccr4, CCR4,
            cndtr4, CNDTR4,
            cpar4, CPAR4,
            cmar4, CMAR4,
            htif4, tcif4,
            chtif4, ctcif4, cgif4,
            teif4, cteif4
        ),
        C5: (
            ccr5, CCR5,
            cndtr5, CNDTR5,
            cpar5, CPAR5,
            cmar5, CMAR5,
            htif5, tcif5,
            chtif5, ctcif5, cgif5,
            teif5, cteif5
        ),
        C6: (
            ccr6, CCR6,
            cndtr6, CNDTR6,
            cpar6, CPAR6,
            cmar6, CMAR6,
            htif6, tcif6,
            chtif6, ctcif6, cgif6,
            teif6, cteif6
        ),
        C7: (
            ccr7, CCR7,
            cndtr7, CNDTR7,
            cpar7, CPAR7,
            cmar7, CMAR7,
            htif7, tcif7,
            chtif7, ctcif7, cgif7,
            teif7, cteif7
        ),
    }),
    DMA2: (dma2, {
        C1: (
            ccr1, CCR1,
            cndtr1, CNDTR1,
            cpar1, CPAR1,
            cmar1, CMAR1,
            htif1, tcif1,
            chtif1, ctcif1, cgif1,
            teif1, cteif1
        ),
        C2: (
            ccr2, CCR2,
            cndtr2, CNDTR2,
            cpar2, CPAR2,
            cmar2, CMAR2,
            htif2, tcif2,
            chtif2, ctcif2, cgif2,
            teif2, cteif2
        ),
        C3: (
            ccr3, CCR3,
            cndtr3, CNDTR3,
            cpar3, CPAR3,
            cmar3, CMAR3,
            htif3, tcif3,
            chtif3, ctcif3, cgif3,
            teif3, cteif3
        ),
        C4: (
            ccr4, CCR4,
            cndtr4, CNDTR4,
            cpar4, CPAR4,
            cmar4, CMAR4,
            htif4, tcif4,
            chtif4, ctcif4, cgif4,
            teif4, cteif4
        ),
        C5: (
            ccr5, CCR5,
            cndtr5, CNDTR5,
            cpar5, CPAR5,
            cmar5, CMAR5,
            htif5, tcif5,
            chtif5, ctcif5, cgif5,
            teif5, cteif5
        ),
        C6: (
            ccr6, CCR6,
            cndtr6, CNDTR6,
            cpar6, CPAR6,
            cmar6, CMAR6,
            htif6, tcif6,
            chtif6, ctcif6, cgif6,
            teif6, cteif6
        ),
        C7: (
            ccr7, CCR7,
            cndtr7, CNDTR7,
            cpar7, CPAR7,
            cmar7, CMAR7,
            htif7, tcif7,
            chtif7, ctcif7, cgif7,
            teif7, cteif7
        ),
    }),
}

/// DMA Receiver
pub struct RxDma<PAYLOAD, RXCH> {
    pub(crate) payload: PAYLOAD,
    pub channel: RXCH,
}

/// DMA Transmitter
pub struct TxDma<PAYLOAD, TXCH> {
    pub(crate) payload: PAYLOAD,
    pub channel: TXCH,
}

/// DMA Receiver/Transmitter
pub struct RxTxDma<PAYLOAD, RXCH, TXCH> {
    pub(crate) payload: PAYLOAD,
    pub rx_channel: RXCH,
    pub tx_channel: TXCH,
}

pub trait Receive {
    type RxChannel;
    type TransmittedWord;
}

pub trait Transmit {
    type TxChannel;
    type ReceivedWord;
}

pub trait ReceiveTransmit {
    type RxChannel;
    type TxChannel;
    type TransferedWord;
}

/// Trait for circular DMA readings from peripheral to memory.
pub trait CircReadDma<B, RS>: Receive
where
    &'static mut B: StaticWriteBuffer<Word = RS>,
    B: 'static,
    Self: core::marker::Sized,
{
    fn circ_read(self, buffer: &'static mut B) -> CircBuffer<B, Self>;
}

/// Trait for DMA readings from peripheral to memory.
pub trait ReadDma<B, RS>: Receive
where
    B: StaticWriteBuffer<Word = RS>,
    Self: core::marker::Sized + TransferPayload,
{
    fn read(self, buffer: B) -> Transfer<W, B, Self>;
}

/// Trait for DMA writing from memory to peripheral.
pub trait WriteDma<B, TS>: Transmit
where
    B: StaticReadBuffer<Word = TS>,
    Self: core::marker::Sized + TransferPayload,
{
    fn write(self, buffer: B) -> Transfer<R, B, Self>;
}

/// Trait for DMA simultaneously writing and reading between memory and peripheral.
pub trait TransferDma<B, TS>: ReceiveTransmit
where
    B: StaticWriteBuffer<Word = TS>,
    Self: core::marker::Sized + TransferPayload,
{
    fn transfer(self, buffer: B) -> Transfer<RW, B, Self>;
}