1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
//! Serial Peripheral Interface (SPI) bus

use core::ptr;

use hal::spi::{FullDuplex, Mode, Phase, Polarity};
use nb;
use stm32l4::stm32l4x2::{SPI1, /* TODO SPI2, */ SPI3};

use gpio::gpioa::{PA5, PA6, PA7};
use gpio::{AF5, Input, Floating, Alternate};
use rcc::{APB1R1, APB2, Clocks};
use time::Hertz;

/// SPI error
#[derive(Debug)]
pub enum Error {
    /// Overrun occurred
    Overrun,
    /// Mode fault occurred
    ModeFault,
    /// CRC error
    Crc,
    #[doc(hidden)]
    _Extensible,
}

pub trait Pins<SPI> {
    const REMAP: bool;
}

impl Pins<SPI1>
    for (
        PA5<Alternate<AF5, Input<Floating>>>,
        PA6<Alternate<AF5, Input<Floating>>>,
        PA7<Alternate<AF5, Input<Floating>>>,
    )
{
    const REMAP: bool = false; // TODO REMAP
}

/// SPI peripheral operating in full duplex master mode
pub struct Spi<SPI, PINS> {
    spi: SPI,
    pins: PINS,
}

macro_rules! hal {
    ($($SPIX:ident: ($spiX:ident, $APBX:ident, $spiXen:ident, $spiXrst:ident, $pclkX:ident),)+) => {
        $(
            impl<PINS> Spi<$SPIX, PINS> {
                /// Configures the SPI peripheral to operate in full duplex master mode
                pub fn $spiX<F>(
                    spi: $SPIX,
                    pins: PINS,
                    mode: Mode,
                    freq: F,
                    clocks: Clocks,
                    apb2: &mut $APBX,
                ) -> Self
                where
                    F: Into<Hertz>,
                    PINS: Pins<$SPIX>
                {
                    // enable or reset $SPIX
                    apb2.enr().modify(|_, w| w.$spiXen().set_bit());
                    apb2.rstr().modify(|_, w| w.$spiXrst().set_bit());
                    apb2.rstr().modify(|_, w| w.$spiXrst().clear_bit());

                    // FRXTH: RXNE event is generated if the FIFO level is greater than or equal to
                    //        8-bit
                    // DS: 8-bit data size
                    // SSOE: Slave Select output disabled
                    spi.cr2
                        .write(|w| unsafe {
                            w.frxth().set_bit().ds().bits(0b111).ssoe().clear_bit()
                        });

                    let br = match clocks.$pclkX().0 / freq.into().0 {
                        0 => unreachable!(),
                        1...2 => 0b000,
                        3...5 => 0b001,
                        6...11 => 0b010,
                        12...23 => 0b011,
                        24...39 => 0b100,
                        40...95 => 0b101,
                        96...191 => 0b110,
                        _ => 0b111,
                    };

                    // CPHA: phase
                    // CPOL: polarity
                    // MSTR: master mode
                    // BR: 1 MHz
                    // SPE: SPI disabled
                    // LSBFIRST: MSB first
                    // SSM: enable software slave management (NSS pin free for other uses)
                    // SSI: set nss high = master mode
                    // CRCEN: hardware CRC calculation disabled
                    // BIDIMODE: 2 line unidirectional (full duplex)
                    spi.cr1.write(|w| unsafe {
                        w.cpha()
                            .bit(mode.phase == Phase::CaptureOnSecondTransition)
                            .cpol()
                            .bit(mode.polarity == Polarity::IdleHigh)
                            .mstr()
                            .set_bit()
                            .br()
                            .bits(br)
                            .spe()
                            .set_bit()
                            .lsbfirst()
                            .clear_bit()
                            .ssi()
                            .set_bit()
                            .ssm()
                            .set_bit()
                            .crcen()
                            .clear_bit()
                            .bidimode()
                            .clear_bit()
                    });

                    Spi { spi, pins }
                }

                /// Releases the SPI peripheral and associated pins
                pub fn free(self) -> ($SPIX, PINS) {
                    (self.spi, self.pins)
                }
            }

            impl<PINS> FullDuplex<u8> for Spi<$SPIX, PINS> {
                type Error = Error;

                fn read(&mut self) -> nb::Result<u8, Error> {
                    let sr = self.spi.sr.read();

                    Err(if sr.ovr().bit_is_set() {
                        nb::Error::Other(Error::Overrun)
                    } else if sr.modf().bit_is_set() {
                        nb::Error::Other(Error::ModeFault)
                    } else if sr.crcerr().bit_is_set() {
                        nb::Error::Other(Error::Crc)
                    } else if sr.rxne().bit_is_set() {
                        // NOTE(read_volatile) read only 1 byte (the svd2rust API only allows
                        // reading a half-word)
                        return Ok(unsafe {
                            ptr::read_volatile(&self.spi.dr as *const _ as *const u8)
                        });
                    } else {
                        nb::Error::WouldBlock
                    })
                }

                fn send(&mut self, byte: u8) -> nb::Result<(), Error> {
                    let sr = self.spi.sr.read();

                    Err(if sr.ovr().bit_is_set() {
                        nb::Error::Other(Error::Overrun)
                    } else if sr.modf().bit_is_set() {
                        nb::Error::Other(Error::ModeFault)
                    } else if sr.crcerr().bit_is_set() {
                        nb::Error::Other(Error::Crc)
                    } else if sr.txe().bit_is_set() {
                        // NOTE(write_volatile) see note above
                        unsafe { ptr::write_volatile(&self.spi.dr as *const _ as *mut u8, byte) }
                        return Ok(());
                    } else {
                        nb::Error::WouldBlock
                    })
                }
            }

            impl<PINS> ::hal::blocking::spi::transfer::Default<u8> for Spi<$SPIX, PINS> {}

            impl<PINS> ::hal::blocking::spi::write::Default<u8> for Spi<$SPIX, PINS> {}
        )+
    }
}

hal! {
    SPI1: (spi1, APB2, spi1en, spi1rst, pclk2),
    // SPI2: (spi2, APB1R1, spi2en, spi2rst, pclk1), // NOT Avail on 32kc
    SPI3: (spi3, APB1R1, spi3en, spi3rst, pclk1),
}

// FIXME not working
// TODO measure if this actually faster than the default implementation
// impl ::hal::blocking::spi::Write<u8> for Spi {
//     type Error = Error;

//     fn write(&mut self, bytes: &[u8]) -> Result<(), Error> {
//         for byte in bytes {
//             'l: loop {
//                 let sr = self.spi.sr.read();

//                 // ignore overruns because we don't care about the incoming data
//                 // if sr.ovr().bit_is_set() {
//                 // Err(nb::Error::Other(Error::Overrun))
//                 // } else
//                 if sr.modf().bit_is_set() {
//                     return Err(Error::ModeFault);
//                 } else if sr.crcerr().bit_is_set() {
//                     return Err(Error::Crc);
//                 } else if sr.txe().bit_is_set() {
//                     // NOTE(write_volatile) see note above
//                     unsafe { ptr::write_volatile(&self.spi.dr as *const _ as *mut u8, *byte) }
//                     break 'l;
//                 } else {
//                     // try again
//                 }
//             }
//         }

//         // wait until the transmission of the last byte is done
//         while self.spi.sr.read().bsy().bit_is_set() {}

//         // clear OVR flag
//         unsafe {
//             ptr::read_volatile(&self.spi.dr as *const _ as *const u8);
//         }
//         self.spi.sr.read();

//         Ok(())
//     }
// }