1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
//! # Analog to Digital converter


#[cfg(feature = "stm32l0x2")]
use core::{
    ops::DerefMut,
    pin::Pin,
    sync::atomic::{
        compiler_fence,
        Ordering,
    },
};

#[cfg(feature = "stm32l0x2")]
use as_slice::AsMutSlice;

use crate::{
    gpio::*,
    hal::adc::{Channel, OneShot},
    pac::ADC,
    rcc::Rcc,
};

#[cfg(feature = "stm32l0x2")]
use crate::dma::{
    self,
    Buffer as _,
};


pub trait AdcExt {
    fn constrain(self, rcc: &mut Rcc) -> Adc<Ready>;
}

impl AdcExt for ADC {
    fn constrain(self, rcc: &mut Rcc) -> Adc<Ready> {
        Adc::new(self, rcc)
    }
}


/// ADC Result Alignment
#[derive(PartialEq)]
pub enum Align {
    /// Right aligned results (least significant bits)
    ///
    /// Results in all precisions returning values from 0-(2^bits-1) in
    /// steps of 1.
    Right,
    /// Left aligned results (most significant bits)
    ///
    /// Results in all precisions returning a value in the range 0-65535.
    /// Depending on the precision the result will step by larger or smaller
    /// amounts.
    Left,
}

/// ADC Sampling Precision
#[derive(Copy, Clone, PartialEq)]
pub enum Precision {
    /// 12 bit precision
    B_12 = 0b00,
    /// 10 bit precision
    B_10 = 0b01,
    /// 8 bit precision
    B_8 = 0b10,
    /// 6 bit precision
    B_6 = 0b11,
}

/// ADC Sampling time
#[derive(Copy, Clone, PartialEq)]
pub enum SampleTime {
    /// 1.5 ADC clock cycles
    T_1_5 = 0b000,

    /// 3.5 ADC clock cycles
    T_3_5 = 0b001,

    /// 7.5 ADC clock cycles
    T_7_5 = 0b010,

    /// 12.5 ADC clock cycles
    T_12_5 = 0b011,

    /// 19.5 ADC clock cycles
    T_19_5 = 0b100,

    /// 39.5 ADC clock cycles
    T_39_5 = 0b101,

    /// 79.5 ADC clock cycles
    T_79_5 = 0b110,

    /// 160.5 ADC clock cycles
    T_160_5 = 0b111,
}

/// Analog to Digital converter interface
pub struct Adc<State> {
    rb: ADC,
    sample_time: SampleTime,
    align: Align,
    precision: Precision,
    _state: State,
}

impl Adc<Ready> {
    pub fn new(adc: ADC, rcc: &mut Rcc) -> Self {
        // Enable ADC clocks
        rcc.rb.apb2enr.modify(|_, w| w.adcen().set_bit());
        adc.cr.modify(|_, w| w.advregen().set_bit());

        Self {
            rb: adc,
            sample_time: SampleTime::T_1_5,
            align: Align::Right,
            precision: Precision::B_12,
            _state: Ready,
        }
    }

    /// Set the Adc sampling time
    pub fn set_sample_time(&mut self, t_samp: SampleTime) {
        self.sample_time = t_samp;
    }

    /// Set the Adc result alignment
    pub fn set_align(&mut self, align: Align) {
        self.align = align;
    }

    /// Set the Adc precision
    pub fn set_precision(&mut self, precision: Precision) {
        self.precision = precision;
    }

    /// Starts a continuous conversion process
    ///
    /// The `channel` argument specifies which channel should be converted.
    ///
    /// The `trigger` argument specifies the trigger that will start each
    /// conversion sequence. This only configures the ADC peripheral to accept
    /// this trigger. The trigger itself must also be configured using its own
    /// peripheral API.
    ///
    /// In addition to the preceeding arguments that configure the ADC,
    /// additional arguments are required to configure the DMA transfer that is
    /// used to read the results from the ADC:
    /// - `dma` is a handle to the DMA peripheral.
    /// - `dma_chan` is the DMA channel used for the transfer. It needs to be
    ///   one of the channels that supports the ADC peripheral.
    /// - `buffer` is the buffer used to buffer the conversion results.
    ///
    /// # Panics
    ///
    /// Panics, if `buffer` is larger than 65535.
    #[cfg(feature = "stm32l0x2")]
    pub fn start<DmaChan, Buf>(mut self,
        channels: impl Into<Channels>,
        trigger:  Option<Trigger>,
        dma:      &mut dma::Handle,
        dma_chan: DmaChan,
        buffer:   Pin<Buf>,
    )
        -> Adc<Active<DmaChan, Buf>>
        where
            DmaToken:    dma::Target<DmaChan>,
            Buf:         DerefMut + 'static,
            Buf::Target: AsMutSlice<Element=u16>,
            DmaChan:     dma::Channel,
    {
        // The ADC can support only one DMA transfer at a time, so only one of
        // these DMA tokens must exist at a time. We guarantee this by only
        // creating it in this method, that can only be called in the ADC's
        // `Ready` state. The DMA transfer is ended and the token associated
        // with it is dropped before we return to the `Ready` state.
        let dma_token = DmaToken(());

        let num_words = (*buffer).len();

        // Safe, because we're only taking the address of a register.
        let address = &self.rb.dr as *const _ as u32;

        // The cast to `u16` could truncate the value, but if it does,
        // `Transfer::new` is going to panic anyway.
        let buffer_unsafe = Buffer {
            ptr: buffer.as_ptr(),
            len: buffer.len() as u16,
            pos: 0,

            r_gt_w: false,
        };

        // Safe, because the trait bounds of this method guarantee that the
        // buffer can be written to.
        let transfer =
            unsafe {
                dma::Transfer::new(
                    dma,
                    dma_token,
                    dma_chan,
                    buffer,
                    num_words,
                    address,
                    dma::Priority::high(),
                    dma::Direction::peripheral_to_memory(),
                    true,
                )
            }
            .start();

        let continous = trigger.is_none();

        self.power_up();
        self.configure(channels, continous, trigger);

        Adc {
            rb:          self.rb,
            sample_time: self.sample_time,
            align:       self.align,
            precision:   self.precision,
            _state:      Active { buffer: buffer_unsafe, transfer },
        }
    }
}

#[cfg(feature = "stm32l0x2")]
impl<DmaChan, Buffer> Adc<Active<DmaChan, Buffer>>
    where DmaChan: dma::Channel,
{
    /// Returns an iterator over all currently available values
    ///
    /// The iterator iterates over all buffered values. It returns `None`, once
    /// the end of the buffer has been reached.
    pub fn read_available(&mut self)
        -> Result<impl Iterator<Item=Result<u16, Error>> + '_, Error>
    {
        if self.rb.isr.read().ovr().is_overrun() {
            self.rb.isr.write(|w| w.ovr().clear());
            return Err(Error::AdcOverrun);
        }

        Ok(
            ReadAvailable {
                buffer:   &mut self._state.buffer,
                transfer: &mut self._state.transfer,
            }
        )
    }
}

impl<State> Adc<State> {
    pub fn release(self) -> ADC {
        self.rb
    }

    fn power_up(&mut self) {
        self.rb.isr.modify(|_, w| w.adrdy().set_bit());
        self.rb.cr.modify(|_, w| w.aden().set_bit());
        while self.rb.isr.read().adrdy().bit_is_clear() {}
    }

    fn power_down(&mut self) {
        self.rb.cr.modify(|_, w| w.addis().set_bit());
        self.rb.isr.modify(|_, w| w.adrdy().set_bit());
        while self.rb.cr.read().aden().bit_is_set() {}
    }

    fn configure(&mut self,
        channels: impl Into<Channels>,
        cont:     bool,
        trigger:  Option<Trigger>,
    ) {
        self.rb.cfgr1.write(|w| {
            w
                .res().bits(self.precision as u8)
                .cont().bit(cont)
                .align().bit(self.align == Align::Left)
                // DMA circular mode
                .dmacfg().set_bit()
                // Generate DMA requests
                .dmaen().set_bit();

            if let Some(trigger) = trigger {
                // Select hardware trigger
                w.extsel().bits(trigger as u8);
                // Enable hardware trigger on rising edge
                w.exten().rising_edge();
            }

            w
        });

        self.rb
            .smpr
            .modify(|_, w| w.smp().bits(self.sample_time as u8));

        self.rb.chselr.write(|w|
            // Safe, as long as there are no `Channel` implementations that
            // define invalid values.
            unsafe { w.bits(channels.into().flags) }
        );

        self.rb.isr.modify(|_, w| w.eos().set_bit());
        self.rb.cr.modify(|_, w| w.adstart().set_bit());
    }
}

impl<WORD, PIN> OneShot<Adc<Ready>, WORD, PIN> for Adc<Ready>
where
    WORD: From<u16>,
    PIN: Channel<Adc<Ready>, ID = u8>,
{
    type Error = ();

    fn read(&mut self, _: &mut PIN) -> nb::Result<WORD, Self::Error> {
        self.power_up();
        self.configure(Channels { flags: 0x1 << PIN::channel() }, false, None);

        while self.rb.isr.read().eos().bit_is_clear() {}

        let res = self.rb.dr.read().bits() as u16;
        let val = if self.align == Align::Left && self.precision == Precision::B_6 {
            res << 8
        } else {
            res
        };

        self.power_down();
        Ok(val.into())
    }
}


/// Indicates that the ADC peripheral is ready
pub struct Ready;

/// Indicates that the ADC peripheral is performing conversions
#[cfg(feature = "stm32l0x2")]
pub struct Active<DmaChan, Buf> {
    transfer: dma::Transfer<DmaToken, DmaChan, Buf, dma::Started>,
    buffer:   Buffer,
}


/// A collection of channels
///
/// Used to set up multi-channel conversions.
pub struct Channels {
    flags: u32,
}

impl Channels {
    /// Adds a channel to the collection
    pub fn add<C>(&mut self, _: C)
        where C: Channel<Adc<Ready>, ID=u8>
    {
        self.flags |= 0x1 << C::channel()
    }
}

impl<C> From<C> for Channels
    where C: Channel<Adc<Ready>, ID=u8>
{
    fn from(channel: C) -> Self {
        let mut c = Channels { flags: 0 };
        c.add(channel);
        c
    }
}


/// Hardware triggers that can start an ADC conversion
#[repr(u8)]
pub enum Trigger {
    /// TRG0
    TIM6_TRGO = 0b000,

    /// TRG1
    TIM21_CH2 = 0b001,

    /// TRG2
    TIM2_TRGO = 0b010,

    /// TRG3
    TIM2_CH4 = 0b011,

    /// TRG4
    TIM22_TRGO = 0b100,

    /// TRG5
    ///
    /// Only available on Category 5 devices.
    #[cfg(any(feature = "stm32l072", feature = "stm32l082"))]
    TIM2_CH3 = 0b101,

    /// TRG6
    TIM3_TRGO = 0b110,

    /// TRG7
    EXTI11 = 0b111,
}


/// Provides access to the buffer that the DMA writes ADC values into
///
/// Since the DMA transfer takes ownership of the buffer, we need to access it
/// with unsafe means. This struct is a safe wrapper around this unsafe access.
#[cfg(feature = "stm32l0x2")]
struct Buffer {
    ptr: *const u16,
    len: u16,
    pos: u16,

    /// Indicates order of read and write indices
    ///
    /// This is initially `false`, indicating that the read position (the `pos`
    /// field) is smaller than or equal to the write position (internally
    /// managed by the DMA peripheral).
    ///
    /// Once the write position wraps around the buffer boundary, this becomes
    /// `true` until the read position also wraps around.
    r_gt_w: bool,
}

#[cfg(feature = "stm32l0x2")]
impl Buffer {
    fn read<T, C, B>(&mut self, transfer: &dma::Transfer<T, C, B, dma::Started>)
        -> Option<Result<u16, Error>>
        where C: dma::Channel
    {
        let transfer_state = self.transfer_state(transfer);
        if self.check_overrun(transfer_state) {
            return Some(Err(Error::BufferOverrun));
        }

        if self.pos == transfer_state.pos {
            // No overrun detected, but read and write positions are equal. This
            // can only mean that the buffer is empty.
            return None;
        }

        // Safe, as we know that `ptr` and `len` define a valid buffer, and we
        // make sure that `pos <= len`. There's a race condition between this
        // line and the DMA peripheral, of course, but we take care of that with
        // these overrun checks.
        //
        // The cast is fine too. This is a 32-bit platform, so casting a `u16`
        // to an `isize` will never truncate the value.
        compiler_fence(Ordering::SeqCst);
        let value = unsafe { *self.ptr.offset(self.pos as isize) };
        compiler_fence(Ordering::SeqCst);

        // At this point we know that there was no overrun before we started
        // reading, but of course the DMA might have overtaken us since that
        // check. Let's check again. If there's still no overrun, we know that
        // our value is valid.
        let transfer_state = self.transfer_state(transfer);
        if self.check_overrun(transfer_state) {
            // Strictly speaking, the overrun might have happened after our
            // read, and `value` might be valid. No way to know for sure though,
            // so let's assume overrun.
            return Some(Err(Error::BufferOverrun));
        }

        // Now we know that the value we read is totally fine. Let's advance the
        // read position to finish up here.
        self.pos = self.pos.wrapping_add(1);
        if self.pos == 0 || self.pos >= self.len {
            // We advanced beyond the end of the buffer, which means we need to
            // wrap around to the beginning.
            self.pos    = 0;
            self.r_gt_w = false;
        }

        Some(Ok(value))
    }

    fn transfer_state<T, C, B>(&self,
        transfer: &dma::Transfer<T, C, B, dma::Started>,
    )
        -> TransferState
        where C: dma::Channel
    {
        let (remaining, half, complete) = transfer.state();
        transfer.clear_flags();

        // Let's translate what we got from the DMA peripheral into a write
        // position that we can compare with our read position.
        let pos = self.len - remaining;

        TransferState {
            pos,
            half,
            complete,
        }
    }

    fn check_overrun(&mut self, transfer_state: TransferState) -> bool {
        let overrun = self.check_overrun_inner(transfer_state);

        if overrun {
            // An overrun occured, but that is not a catastrophic error. Values
            // got lost, but that doesn't mean we can't read the new values
            // starting now. Let's get the buffer into a consistent state to
            // make that possible.
            //
            // There are various ways to go about this. What we're doing here is
            // to throw away all values in the buffer and start again with an
            // empty buffer, because that minimizes the likelihood of getting
            // another overrun right away.
            //
            // Maybe doing the opposite, setting the read position so that the
            // buffer is full, to minimize lost values, would be better. But
            // then we should give the user the option to empty the buffer
            // manually. I've chosen to go with the simpler option for now.
            self.pos    = transfer_state.pos;
            self.r_gt_w = false;
        }

        overrun
    }

    fn check_overrun_inner(&mut self, transfer_state: TransferState) -> bool {
        if transfer_state.half && transfer_state.complete {
            // Each time we attempt a read, we clear both flags. If both flags
            // are set, then basically anything could have happened in between,
            // so we have to assume an overrun.
            //
            // Please note that it's possible that the DMA has written beyond
            // the half point and wrapped around, causing both of the flags to
            // be set, without passing our current reading position. However,
            // there's no way to distinguish this case from the DMA having
            // passed those marks multiple times, so we have to be conservative
            // and assume an overrun.
            return true;
        }

        if transfer_state.complete {
            // The write has wrapped beyond the buffer boundary and started
            // again at the beginning of the buffer. This is completely normal,
            // but it affects how we detect an overrun.

            if self.r_gt_w {
                // The read position was greater than the write position, so if
                // the write position wrapped, it must have overtaken the read
                // position. This is an overrun.
                return true;
            }

            // The write position has wrapped, so now the read position needs
            // to be greater than the write position.
            self.r_gt_w = true;
        }

        // At this point we know that everything _could_ be alright, judging
        // from the combination of flags we checked so far. We still need to
        // compare read and write positions to make sure that we don't actually
        // have an overrun.
        if self.r_gt_w {
            self.pos <= transfer_state.pos
        }
        else {
            self.pos > transfer_state.pos
        }
    }
}


/// Internal struct to represent the current state of the DMA transfer
#[derive(Clone, Copy, Debug)]
struct TransferState {
    pos:      u16,
    half:     bool,
    complete: bool,
}


/// Iterator over buffered ADC values
#[cfg(feature = "stm32l0x2")]
pub struct ReadAvailable<'r, T, C, B> {
    buffer:   &'r mut Buffer,
    transfer: &'r dma::Transfer<T, C, B, dma::Started>,
}

#[cfg(feature = "stm32l0x2")]
impl<T, C, B> Iterator for ReadAvailable<'_, T, C, B>
    where C: dma::Channel
{
    type Item = Result<u16, Error>;

    fn next(&mut self) -> Option<Self::Item> {
        self.buffer.read(self.transfer)
    }
}


/// Used for DMA transfers
///
/// This is an internal implementation detail. It is only public because it
/// leaks out of a public API in the form of a `where` clause.
pub struct DmaToken(());


/// Represents an ADC error
#[derive(Debug)]
pub enum Error {
    /// Indicates that converted data was not read in time
    ///
    /// This happens if either the user or the DMA (depending on mode) did not
    /// read the converted value before another one was ready.
    AdcOverrun,

    /// Indicates that values in the internal buffer have been overwritten
    ///
    /// This is not a critical error, as a circular buffer is used, and the DMA
    /// just keeps writing more values. It does mean that some values in the
    /// buffer were overwritten though.
    BufferOverrun,
}


macro_rules! int_adc {
    ($($Chan:ident: ($chan:expr, $en:ident)),+ $(,)*) => {
        $(
            pub struct $Chan;

            impl $Chan {
                pub fn new() -> Self {
                    Self {}
                }

                pub fn enable(&mut self, adc: &mut Adc<Ready>) {
                    adc.rb.ccr.modify(|_, w| w.$en().set_bit());
                }

                pub fn disable(&mut self, adc: &mut Adc<Ready>) {
                    adc.rb.ccr.modify(|_, w| w.$en().clear_bit());
                }
            }

            impl Channel<Adc<Ready>> for $Chan {
                type ID = u8;

                fn channel() -> u8 {
                    $chan
                }
            }
        )+
    };
}

macro_rules! adc_pins {
    ($($Chan:ty: ($pin:ty, $chan:expr)),+ $(,)*) => {
        $(
            impl Channel<Adc<Ready>> for $pin {
                type ID = u8;

                fn channel() -> u8 { $chan }
            }
        )+
    };
}

int_adc! {
    VTemp: (18, tsen),
    VRef: (17, vrefen),
}

adc_pins! {
    Channel0: (gpioa::PA0<Analog>, 0u8),
    Channel1: (gpioa::PA1<Analog>, 1u8),
    Channel2: (gpioa::PA2<Analog>, 2u8),
    Channel3: (gpioa::PA3<Analog>, 3u8),
    Channel4: (gpioa::PA4<Analog>, 4u8),
    Channel5: (gpioa::PA5<Analog>, 5u8),
    Channel6: (gpioa::PA6<Analog>, 6u8),
    Channel7: (gpioa::PA7<Analog>, 7u8),
    Channel8: (gpiob::PB0<Analog>, 8u8),
    Channel9: (gpiob::PB1<Analog>, 9u8),
}

#[cfg(all(feature = "stm32l052", any(feature = "lqfp64", feature = "tfbga64",),))]
adc_pins! {
    Channel10: (gpioc::PC0<Analog>, 10u8),
    Channel11: (gpioc::PC1<Analog>, 11u8),
    Channel12: (gpioc::PC2<Analog>, 12u8),
}

#[cfg(all(
    feature = "stm32l072",
    any(
        feature = "lqfp64",
        feature = "lqfp100",
        feature = "tfbga64",
        feature = "ufbga64",
        feature = "ufbga100",
        feature = "wlcsp49",
    ),
))]
adc_pins! {
    Channel10: (gpioc::PC0<Analog>, 10u8),
    Channel11: (gpioc::PC1<Analog>, 11u8),
    Channel12: (gpioc::PC2<Analog>, 12u8),
}

#[cfg(all(feature = "stm32l082", feature = "wlcsp49"))]
adc_pins! {
    Channel10: (gpioc::PC0<Analog>, 10u8),
    Channel11: (gpioc::PC1<Analog>, 11u8),
    Channel12: (gpioc::PC2<Analog>, 12u8),
}

#[cfg(all(feature = "stm32l052", feature = "lqfp64"))]
adc_pins! {
    Channel13: (gpioc::PC3<Analog>, 13u8),
}

#[cfg(all(
    feature = "stm32l072",
    any(feature = "lqfp64", feature = "lqfp100", feature = "ufbga100",),
))]
adc_pins! {
    Channel13: (gpioc::PC3<Analog>, 13u8),
}

#[cfg(all(feature = "stm32l052", any(feature = "lqfp64", feature = "tfbga64",),))]
adc_pins! {
    Channel14: (gpioc::PC4<Analog>, 14u8),
    Channel15: (gpioc::PC5<Analog>, 15u8),
}

#[cfg(all(
    feature = "stm32l072",
    any(
        feature = "lqfp64",
        feature = "lqfp100",
        feature = "tfbga64",
        feature = "ufbga64",
        feature = "ufbga100",
    ),
))]
adc_pins! {
    Channel14: (gpioc::PC4<Analog>, 14u8),
    Channel15: (gpioc::PC5<Analog>, 15u8),
}