1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
//! Low-Power Timer (LPTIM) support.

use crate::hal;
use crate::pac::LPTIM;
use crate::rcc::Rcc;
use crate::pwr::PWR;
use crate::time::{Hertz, MicroSeconds};
use cast::{u32, u64};
use core::marker::PhantomData;
use core::convert::TryFrom;
use void::Void;

mod sealed {
    pub trait Sealed {}
}

/// Low-Power Timer counting in one-shot mode.
pub enum OneShot {}

/// Low-Power Timer counting in periodic mode.
pub enum Periodic {}

impl sealed::Sealed for OneShot {}
impl sealed::Sealed for Periodic {}

/// Marker trait for counter directions.
pub trait CountMode: sealed::Sealed {}

impl CountMode for OneShot {}
impl CountMode for Periodic {}

/// Clock source selection for the Low-Power Timer `LPTIM`.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum ClockSrc {
    /// Drive LPTIM with APB1 clock.
    Apb1 = 0b00,

    /// Drive LPTIM with Low-Speed Internal (LSI) clock.
    ///
    /// The user has to ensure that the LSI clock is running, or the timer won't
    /// start counting.
    Lsi = 0b01,

    /// Drive LPTIM with Internal 16 MHz clock.
    Hsi16 = 0b10,

    /// Drive LPTIM with Low-Speed External (LSE) clock at 32.768 kHz.
    ///
    /// The user has to ensure that the LSE clock is running, or the timer won't
    /// start counting.
    Lse = 0b11,
}

/// Interrupt enable flags.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Default)]
pub struct Interrupts {
    /// Encoder direction change to down.
    pub enc_dir_down: bool,
    /// Encoder direction change to up.
    pub enc_dir_up: bool,
    /// ARR register update successful.
    pub autoreload_update_ok: bool,
    /// CMP register update successful.
    pub compare_update_ok: bool,
    /// Valid edge on ext. trigger input.
    pub ext_trig: bool,
    /// ARR register matches current CNT value.
    pub autoreload_match: bool,
    /// CMP register matches current CNT value.
    pub compare_match: bool,
}

/// Low-Power Timer (`LPTIM`).
///
/// The Low-Power Timer is a 16-bit timer with a prescaler of up to 128. It can run off of the APB1,
/// LSI, HSI16, or LSE clocks. With LSE, the slowest clock at 32.768 kHz, this results in a maximum
/// timeout of 256 seconds, or 4 minutes and 16 seconds.
///
/// The timer can be initialized either in one-shot mode or in periodic mode, using `init_oneshot`
/// or `init_periodic` respectively. In periodic mode, the embedded-hal `Periodic` marker trait is
/// implemented and the `CountDown` implementation uses `Hertz` as the time unit. In one-shot mode,
/// the `CountDown` implementation instead uses `MicroSeconds`, allowing for a multi-second timeout
/// to be configured (with the tradeoff being a larger code size due to use of 64-bit arithmetic).
pub struct LpTimer<M: CountMode> {
    lptim: LPTIM,
    input_freq: Hertz,
    _mode: PhantomData<M>,
}

impl LpTimer<Periodic> {
    /// Initializes the Low-Power Timer in periodic mode.
    ///
    /// The timer needs to be started by calling `.start(freq)`.
    pub fn init_periodic(lptim: LPTIM, pwr: &mut PWR, rcc: &mut Rcc, clk: ClockSrc) -> Self {
        Self::init(lptim, pwr, rcc, clk)
    }
}

impl LpTimer<OneShot> {
    /// Initializes the Low-Power Timer in one-shot mode.
    ///
    /// The timer needs to be started by calling `.start(freq)`.
    pub fn init_oneshot(lptim: LPTIM, pwr: &mut PWR, rcc: &mut Rcc, clk: ClockSrc) -> Self {
        Self::init(lptim, pwr, rcc, clk)
    }
}

impl<M: CountMode> LpTimer<M> {
    fn init(lptim: LPTIM, pwr: &mut PWR, rcc: &mut Rcc, clk: ClockSrc) -> Self {
        // `pwr` is not used. It is used as a marker that guarantees that `PWR.CR` is set so this
        // function can set the `RCC.LSEON` bit, which is otherwise write protected.
        let _ = pwr;

        // Enable selected clock and determine its frequency
        let input_freq = match clk {
            ClockSrc::Apb1 => rcc.clocks.apb1_clk(),    // always enabled
            ClockSrc::Lsi => {
                // Turn on LSI
                rcc.rb.csr.modify(|_, w| w.lsion().set_bit());

                // Wait for LSI to be ready
                while rcc.rb.csr.read().lsirdy().bit_is_clear() {}

                Hertz(37_000)
            }
            ClockSrc::Hsi16 => {
                // Turn on HSI16
                rcc.rb.cr.modify(|_, w| w.hsi16on().set_bit());

                // Wait for HSI16 to be ready
                while rcc.rb.cr.read().hsi16rdyf().bit_is_clear() {}

                Hertz(16_000_000)
            }
            ClockSrc::Lse => {
                // Turn on LSE
                rcc.rb.csr.modify(|_, w| w.lseon().set_bit());

                // Wait for LSE to be ready
                while rcc.rb.csr.read().lserdy().bit_is_clear() {}

                Hertz(32_768)
            }
        };

        // Select and enable clock. Right now we only support the internal RCC clocks, but LPTIM can
        // also run as a counter with a dedicated external input.
        rcc.rb.ccipr.modify(|_, w| w.lptim1sel().bits(clk as u8));
        rcc.rb.apb1enr.modify(|_, w| w.lptim1en().set_bit());

        rcc.rb.apb1rstr.modify(|_, w| w.lptim1rst().set_bit());
        rcc.rb.apb1rstr.modify(|_, w| w.lptim1rst().clear_bit());

        Self {
            lptim,
            input_freq,
            _mode: PhantomData,
        }
    }

    /// Disables the timer and configures it so that starting it will make it fire at the given
    /// frequency.
    fn configure(&mut self, conf: TimeConf) {
        // Disable the timer. The prescaler can only be changed while it's disabled.
        self.lptim.cr.write(|w| w.enable().clear_bit());

        self.lptim
            .cfgr
            .write(|w| w.presc().bits(conf.psc_encoded).timout().set_bit());

        self.lptim.cr.write(|w| w.enable().set_bit());

        // "After setting the ENABLE bit, a delay of two counter clock is needed before the LPTIM is
        // actually enabled."
        // The slowest LPTIM clock source is LSE at 32768 Hz, the fastest CPU clock is ~80 MHz. At
        // these conditions, one cycle of the LPTIM clock takes 2500 CPU cycles, so sleep for 5000.
        cortex_m::asm::delay(5000);

        // ARR can only be changed while the timer is *en*abled
        self.lptim
            .arr
            .write(|w| w.arr().bits(conf.arr));
    }

    /// Disables and destructs the timer, returning the raw `LPTIM` peripheral.
    pub fn free(self) -> LPTIM {
        self.lptim.cr.reset();
        self.lptim
    }

    /// Disables the timer and enables the given interrupts.
    pub fn enable_interrupts(&mut self, interrupts: Interrupts) {
        // IER can only be modified when the timer is disabled
        self.lptim.cr.reset();
        self.lptim.ier.modify(|_, w| {
            if interrupts.enc_dir_down { w.downie().enabled(); }
            if interrupts.enc_dir_up { w.upie().enabled(); }
            if interrupts.autoreload_update_ok { w.arrokie().enabled(); }
            if interrupts.compare_update_ok { w.cmpokie().enabled(); }
            if interrupts.ext_trig { w.exttrigie().enabled(); }
            if interrupts.autoreload_match { w.arrmie().enabled(); }
            if interrupts.compare_match { w.cmpmie().enabled(); }
            w
        })
    }

    /// Disables the timer and disables the given interrupts.
    pub fn disable_interrupts(&mut self, interrupts: Interrupts) {
        // IER can only be modified when the timer is disabled
        self.lptim.cr.reset();
        self.lptim.ier.modify(|_, w| {
            if interrupts.enc_dir_down { w.downie().disabled(); }
            if interrupts.enc_dir_up { w.upie().disabled(); }
            if interrupts.autoreload_update_ok { w.arrokie().disabled(); }
            if interrupts.compare_update_ok { w.cmpokie().disabled(); }
            if interrupts.ext_trig { w.exttrigie().disabled(); }
            if interrupts.autoreload_match { w.arrmie().disabled(); }
            if interrupts.compare_match { w.cmpmie().disabled(); }
            w
        })
    }
}

impl hal::timer::CountDown for LpTimer<Periodic> {
    type Time = Hertz;

    fn start<T>(&mut self, freq: T)
    where
        T: Into<Hertz>,
    {
        self.configure(TimeConf::calculate_freq(self.input_freq, freq.into()));

        // Start LPTIM in continuous mode.
        self.lptim
            .cr
            .write(|w| w.enable().set_bit().cntstrt().set_bit());
    }

    fn wait(&mut self) -> nb::Result<(), Void> {
        if self.lptim.isr.read().arrm().bit_is_clear() {
            Err(nb::Error::WouldBlock)
        } else {
            self.lptim.icr.write(|w| w.arrmcf().set_bit());
            Ok(())
        }
    }
}

impl hal::timer::Periodic for LpTimer<Periodic> {}

impl hal::timer::CountDown for LpTimer<OneShot> {
    type Time = MicroSeconds;

    fn start<T>(&mut self, period: T)
    where
        T: Into<MicroSeconds>,
    {
        self.configure(TimeConf::calculate_period(self.input_freq, period.into()));

        // Start LPTIM in one-shot mode.
        self.lptim
            .cr
            .write(|w| w.enable().set_bit().sngstrt().set_bit());
    }

    fn wait(&mut self) -> nb::Result<(), Void> {
        if self.lptim.isr.read().arrm().bit_is_clear() {
            Err(nb::Error::WouldBlock)
        } else {
            self.lptim.icr.write(|w| w.arrmcf().set_bit());
            Ok(())
        }
    }
}

#[derive(Copy, Clone)]
struct TimeConf {
    psc_encoded: u8,
    arr: u16,
}

impl TimeConf {
    const ARR_MAX: u16 = u16::max_value();

    /// Calculates prescaler and autoreload value for producing overflows at a rate of
    /// `output_freq`.
    fn calculate_freq(input_freq: Hertz, output_freq: Hertz) -> Self {
        // Fi  = Frequency of input clock
        // Fo  = Output frequency (frequency of timer overflows, using ARR)
        // psc = prescaler (must be power of two in range 1..=128)
        // We know Fi and Fo, and want to know psc and ARR.
        //
        // The timer works like this:
        // Fo  = (Fi / psc) / ARR
        //
        // Therefore:
        // Fo * ARR = Fi / psc
        // Fo * ARR * psc = Fi
        // ARR = (Fi / Fo) / psc
        // psc = (Fi / Fo) / ARR
        //
        // We first calculate `psc` by assuming the largest `ARR` value, and round the result to the
        // next power of two. If that's > 128, the chosen frequency is too slow for the timer and
        // we panic. Otherwise we use that `psc` to calculate the real `ARR`.

        // Add `ARR_MAX - 1` to round the result upwards
        let psc = ((input_freq.0 / output_freq.0) + (u32(Self::ARR_MAX) - 1)) / u32(Self::ARR_MAX);
        let psc = psc.next_power_of_two();  // always >= 1
        assert!(psc <= 128);

        // This calculation must be in u16 range because we assume the max. ARR value above ^
        let arr = u16::try_from((input_freq.0 / output_freq.0) / psc).unwrap();

        // PSC encoding is N where `psc = 2^N`
        let psc_encoded = psc.trailing_zeros() as u8;

        Self {
            psc_encoded,
            arr,
        }
    }

    /// Calculates prescaler and autoreload value for producing overflows after every
    /// `output_period`.
    fn calculate_period(input_freq: Hertz, output_period: MicroSeconds) -> Self {
        // Here, the `output_period` can be very long, resulting in an output frequency of < 1 Hz.

        // Fi  = Frequency of input clock
        // Fo  = Output frequency (frequency of timer overflows, using ARR)
        // Po  = 1 / Fo = Output Period
        // psc = prescaler (must be power of two in range 1..=128)
        // We know Fi and Fo, and want to know psc and ARR.
        //
        // The timer works like this:
        // Fo  = 1 / Po = (Fi / psc) / ARR
        //
        // Therefore:
        // ARR / Po = Fi / psc
        // (ARR * psc) / Po = Fi
        // ARR * psc = Fi * Po
        // ARR = (Fi * Po) / psc
        // psc = (Fi * Po) / ARR
        //
        // We first calculate `psc` by assuming the largest `ARR` value, and round the result to the
        // next power of two. If that's > 128, the chosen period is too long for the timer and we
        // panic. Otherwise we use that `psc` to calculate the real `ARR`.

        // First, calculate the product `Fi * Po`. Since `output_period` is in µs, we have to divide
        // it by 1_000_000 to get seconds, without losing much precision. We can divide either of
        // the multiplicants, or the resulting product. Dividing the resulting product results in
        // the least amount of rouding error, but might require 64-bit multiplication and division,
        // which is very expensive. Dividing either of the multiplicands by 1_000_000 can easily
        // result in significant rounding error that makes this API useless.
        let fi_po = u32(u64(input_freq.0) * u64(output_period.0) / 1_000_000).unwrap();
        // Add `ARR_MAX - 1` to round the result upwards
        let psc = (fi_po + (u32(Self::ARR_MAX) - 1)) / u32(Self::ARR_MAX);
        assert!(psc > 0);  // if 0, the output period is too short to be produced from input_freq
        let psc = psc.next_power_of_two();  // always >= 1
        assert!(psc <= 128); // if > 128, the output period is too long to be produced from input_freq

        // This calculation must be in u16 range because we assume the max. ARR value above ^
        let arr = (fi_po / psc) as u16;

        // PSC encoding is N where `psc = 2^N`
        let psc_encoded = psc.trailing_zeros() as u8;

        Self {
            psc_encoded,
            arr,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::time::U32Ext;

    /// Test-only methods.
    impl TimeConf {
        fn psc(&self) -> u8 {
            1 << self.psc_encoded
        }

        /// Calculates the output frequency if the timer is configured according to `self` and is run at
        /// `input_freq`.
        fn output_freq(&self, input_freq: Hertz) -> Hertz {
            Hertz(input_freq.0 / u32(self.psc()) / u32(self.arr))
        }

        fn output_period(&self, input_freq: Hertz) -> MicroSeconds {
            MicroSeconds(u32(u64(self.psc()) * u64(self.arr) * 1_000_000 / u64(input_freq.0)).unwrap())
        }
    }

    #[test]
    fn calc_from_freq() {
        // no psc necessary (so psc=1)
        let c = TimeConf::calculate_freq(32_768.hz(), 1.hz());
        assert_eq!(c.psc(), 1);
        assert_eq!(c.arr, 32_768);
        assert_eq!(c.output_freq(32_768.hz()), 1.hz());

        // barely works with psc=1
        let c = TimeConf::calculate_freq(65535.hz(), 1.hz());
        assert_eq!(c.psc(), 1);
        assert_eq!(c.arr, 65535);
        assert_eq!(c.output_freq(65535.hz()), 1.hz());

        // barely needs psc=2
        let c = TimeConf::calculate_freq(65536.hz(), 1.hz());
        assert_eq!(c.psc(), 2);
        assert_eq!(c.arr, 32768);
        assert_eq!(c.output_freq(65536.hz()), 1.hz());

        // maximum possible ratio, needs psc=128 and max ARR
        let c = TimeConf::calculate_freq((65535 * 128).hz(), 1.hz());
        assert_eq!(c.psc(), 128);
        assert_eq!(c.arr, 65535);
        assert_eq!(c.output_freq((65535 * 128).hz()), 1.hz());
    }

    #[test]
    #[should_panic(expected = "assertion failed: psc <= 128")]
    fn freq_ratio_too_large() {
        TimeConf::calculate_freq((65535 * 128 + 1).hz(), 1.hz());
    }

    #[test]
    fn calc_from_period() {
        // 1:1 ratio
        let c = TimeConf::calculate_period(1_000.hz(), 1_000.us());
        assert_eq!(c.psc(), 1);
        assert_eq!(c.arr, 1);
        assert_eq!(c.output_freq(1_000.hz()), 1_000.hz());

        // real-world test: go from 32.768 kHz to 10 s
        let c = TimeConf::calculate_period(32_768.hz(), 10_000_000.us());
        assert_eq!(c.psc(), 8);
        assert_eq!(c.arr, 40960);
        assert_eq!(c.output_freq(32_768.hz()), 0.hz());
        assert_eq!(c.output_period(32_768.hz()), 10_000_000.us());
    }

    #[test]
    #[should_panic(expected = "assertion failed: psc > 0")]
    fn period_too_short() {
        TimeConf::calculate_period(1_000.hz(), 999.us());
    }
}