1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
#[doc = "Register `CR2` reader"]
pub struct R(crate::R<CR2_SPEC>);
impl core::ops::Deref for R {
    type Target = crate::R<CR2_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl From<crate::R<CR2_SPEC>> for R {
    #[inline(always)]
    fn from(reader: crate::R<CR2_SPEC>) -> Self {
        R(reader)
    }
}
#[doc = "Register `CR2` writer"]
pub struct W(crate::W<CR2_SPEC>);
impl core::ops::Deref for W {
    type Target = crate::W<CR2_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl core::ops::DerefMut for W {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}
impl From<crate::W<CR2_SPEC>> for W {
    #[inline(always)]
    fn from(writer: crate::W<CR2_SPEC>) -> Self {
        W(writer)
    }
}
#[doc = "FIFO threshold. This bit is set and cleared by software.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
#[repr(u8)]
pub enum FTH_A {
    #[doc = "0: FIFO empty"]
    Empty = 0,
    #[doc = "1: 1⁄4 FIFO"]
    Quarter1 = 1,
    #[doc = "2: 1⁄2 FIFO"]
    Quarter2 = 2,
    #[doc = "3: 3⁄4 FIFO"]
    Quarter3 = 3,
    #[doc = "4: FIFO full"]
    Full = 4,
}
impl From<FTH_A> for u8 {
    #[inline(always)]
    fn from(variant: FTH_A) -> Self {
        variant as _
    }
}
#[doc = "Field `FTH` reader - FIFO threshold. This bit is set and cleared by software."]
pub type FTH_R = crate::FieldReader<u8, FTH_A>;
impl FTH_R {
    #[doc = "Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> Option<FTH_A> {
        match self.bits {
            0 => Some(FTH_A::Empty),
            1 => Some(FTH_A::Quarter1),
            2 => Some(FTH_A::Quarter2),
            3 => Some(FTH_A::Quarter3),
            4 => Some(FTH_A::Full),
            _ => None,
        }
    }
    #[doc = "Checks if the value of the field is `Empty`"]
    #[inline(always)]
    pub fn is_empty(&self) -> bool {
        *self == FTH_A::Empty
    }
    #[doc = "Checks if the value of the field is `Quarter1`"]
    #[inline(always)]
    pub fn is_quarter1(&self) -> bool {
        *self == FTH_A::Quarter1
    }
    #[doc = "Checks if the value of the field is `Quarter2`"]
    #[inline(always)]
    pub fn is_quarter2(&self) -> bool {
        *self == FTH_A::Quarter2
    }
    #[doc = "Checks if the value of the field is `Quarter3`"]
    #[inline(always)]
    pub fn is_quarter3(&self) -> bool {
        *self == FTH_A::Quarter3
    }
    #[doc = "Checks if the value of the field is `Full`"]
    #[inline(always)]
    pub fn is_full(&self) -> bool {
        *self == FTH_A::Full
    }
}
#[doc = "Field `FTH` writer - FIFO threshold. This bit is set and cleared by software."]
pub type FTH_W<'a, const O: u8> = crate::FieldWriter<'a, u32, CR2_SPEC, u8, FTH_A, 3, O>;
impl<'a, const O: u8> FTH_W<'a, O> {
    #[doc = "FIFO empty"]
    #[inline(always)]
    pub fn empty(self) -> &'a mut W {
        self.variant(FTH_A::Empty)
    }
    #[doc = "1⁄4 FIFO"]
    #[inline(always)]
    pub fn quarter1(self) -> &'a mut W {
        self.variant(FTH_A::Quarter1)
    }
    #[doc = "1⁄2 FIFO"]
    #[inline(always)]
    pub fn quarter2(self) -> &'a mut W {
        self.variant(FTH_A::Quarter2)
    }
    #[doc = "3⁄4 FIFO"]
    #[inline(always)]
    pub fn quarter3(self) -> &'a mut W {
        self.variant(FTH_A::Quarter3)
    }
    #[doc = "FIFO full"]
    #[inline(always)]
    pub fn full(self) -> &'a mut W {
        self.variant(FTH_A::Full)
    }
}
#[doc = "FIFO flush. This bit is set by software. It is always read as 0. This bit should be configured when the SAI is disabled.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum FFLUSH_AW {
    #[doc = "0: No FIFO flush"]
    NoFlush = 0,
    #[doc = "1: FIFO flush. Programming this bit to 1 triggers the FIFO Flush. All the internal FIFO pointers (read and write) are cleared"]
    Flush = 1,
}
impl From<FFLUSH_AW> for bool {
    #[inline(always)]
    fn from(variant: FFLUSH_AW) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `FFLUSH` writer - FIFO flush. This bit is set by software. It is always read as 0. This bit should be configured when the SAI is disabled."]
pub type FFLUSH_W<'a, const O: u8> = crate::BitWriter<'a, u32, CR2_SPEC, FFLUSH_AW, O>;
impl<'a, const O: u8> FFLUSH_W<'a, O> {
    #[doc = "No FIFO flush"]
    #[inline(always)]
    pub fn no_flush(self) -> &'a mut W {
        self.variant(FFLUSH_AW::NoFlush)
    }
    #[doc = "FIFO flush. Programming this bit to 1 triggers the FIFO Flush. All the internal FIFO pointers (read and write) are cleared"]
    #[inline(always)]
    pub fn flush(self) -> &'a mut W {
        self.variant(FFLUSH_AW::Flush)
    }
}
#[doc = "Field `TRIS` reader - Tristate management on data line. This bit is set and cleared by software. It is meaningful only if the audio block is configured as a transmitter. This bit is not used when the audio block is configured in SPDIF mode. It should be configured when SAI is disabled. Refer to Section: Output data line management on an inactive slot for more details."]
pub type TRIS_R = crate::BitReader<bool>;
#[doc = "Field `TRIS` writer - Tristate management on data line. This bit is set and cleared by software. It is meaningful only if the audio block is configured as a transmitter. This bit is not used when the audio block is configured in SPDIF mode. It should be configured when SAI is disabled. Refer to Section: Output data line management on an inactive slot for more details."]
pub type TRIS_W<'a, const O: u8> = crate::BitWriter<'a, u32, CR2_SPEC, bool, O>;
#[doc = "Mute. This bit is set and cleared by software. It is meaningful only when the audio block operates as a transmitter. The MUTE value is linked to value of MUTEVAL if the number of slots is lower or equal to 2, or equal to 0 if it is greater than 2. Refer to Section: Mute mode for more details. Note: This bit is meaningless and should not be used for SPDIF audio blocks.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum MUTE_A {
    #[doc = "0: No mute mode"]
    Disabled = 0,
    #[doc = "1: Mute mode enabled"]
    Enabled = 1,
}
impl From<MUTE_A> for bool {
    #[inline(always)]
    fn from(variant: MUTE_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `MUTE` reader - Mute. This bit is set and cleared by software. It is meaningful only when the audio block operates as a transmitter. The MUTE value is linked to value of MUTEVAL if the number of slots is lower or equal to 2, or equal to 0 if it is greater than 2. Refer to Section: Mute mode for more details. Note: This bit is meaningless and should not be used for SPDIF audio blocks."]
pub type MUTE_R = crate::BitReader<MUTE_A>;
impl MUTE_R {
    #[doc = "Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> MUTE_A {
        match self.bits {
            false => MUTE_A::Disabled,
            true => MUTE_A::Enabled,
        }
    }
    #[doc = "Checks if the value of the field is `Disabled`"]
    #[inline(always)]
    pub fn is_disabled(&self) -> bool {
        *self == MUTE_A::Disabled
    }
    #[doc = "Checks if the value of the field is `Enabled`"]
    #[inline(always)]
    pub fn is_enabled(&self) -> bool {
        *self == MUTE_A::Enabled
    }
}
#[doc = "Field `MUTE` writer - Mute. This bit is set and cleared by software. It is meaningful only when the audio block operates as a transmitter. The MUTE value is linked to value of MUTEVAL if the number of slots is lower or equal to 2, or equal to 0 if it is greater than 2. Refer to Section: Mute mode for more details. Note: This bit is meaningless and should not be used for SPDIF audio blocks."]
pub type MUTE_W<'a, const O: u8> = crate::BitWriter<'a, u32, CR2_SPEC, MUTE_A, O>;
impl<'a, const O: u8> MUTE_W<'a, O> {
    #[doc = "No mute mode"]
    #[inline(always)]
    pub fn disabled(self) -> &'a mut W {
        self.variant(MUTE_A::Disabled)
    }
    #[doc = "Mute mode enabled"]
    #[inline(always)]
    pub fn enabled(self) -> &'a mut W {
        self.variant(MUTE_A::Enabled)
    }
}
#[doc = "Mute value. This bit is set and cleared by software.It must be written before enabling the audio block: SAIXEN. This bit is meaningful only when the audio block operates as a transmitter, the number of slots is lower or equal to 2 and the MUTE bit is set. If more slots are declared, the bit value sent during the transmission in mute mode is equal to 0, whatever the value of MUTEVAL. if the number of slot is lower or equal to 2 and MUTEVAL = 1, the MUTE value transmitted for each slot is the one sent during the previous frame. Refer to Section: Mute mode for more details. Note: This bit is meaningless and should not be used for SPDIF audio blocks.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum MUTEVAL_A {
    #[doc = "0: Bit value 0 is sent during the mute mode"]
    SendZero = 0,
    #[doc = "1: Last values are sent during the mute mode"]
    SendLast = 1,
}
impl From<MUTEVAL_A> for bool {
    #[inline(always)]
    fn from(variant: MUTEVAL_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `MUTEVAL` reader - Mute value. This bit is set and cleared by software.It must be written before enabling the audio block: SAIXEN. This bit is meaningful only when the audio block operates as a transmitter, the number of slots is lower or equal to 2 and the MUTE bit is set. If more slots are declared, the bit value sent during the transmission in mute mode is equal to 0, whatever the value of MUTEVAL. if the number of slot is lower or equal to 2 and MUTEVAL = 1, the MUTE value transmitted for each slot is the one sent during the previous frame. Refer to Section: Mute mode for more details. Note: This bit is meaningless and should not be used for SPDIF audio blocks."]
pub type MUTEVAL_R = crate::BitReader<MUTEVAL_A>;
impl MUTEVAL_R {
    #[doc = "Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> MUTEVAL_A {
        match self.bits {
            false => MUTEVAL_A::SendZero,
            true => MUTEVAL_A::SendLast,
        }
    }
    #[doc = "Checks if the value of the field is `SendZero`"]
    #[inline(always)]
    pub fn is_send_zero(&self) -> bool {
        *self == MUTEVAL_A::SendZero
    }
    #[doc = "Checks if the value of the field is `SendLast`"]
    #[inline(always)]
    pub fn is_send_last(&self) -> bool {
        *self == MUTEVAL_A::SendLast
    }
}
#[doc = "Field `MUTEVAL` writer - Mute value. This bit is set and cleared by software.It must be written before enabling the audio block: SAIXEN. This bit is meaningful only when the audio block operates as a transmitter, the number of slots is lower or equal to 2 and the MUTE bit is set. If more slots are declared, the bit value sent during the transmission in mute mode is equal to 0, whatever the value of MUTEVAL. if the number of slot is lower or equal to 2 and MUTEVAL = 1, the MUTE value transmitted for each slot is the one sent during the previous frame. Refer to Section: Mute mode for more details. Note: This bit is meaningless and should not be used for SPDIF audio blocks."]
pub type MUTEVAL_W<'a, const O: u8> = crate::BitWriter<'a, u32, CR2_SPEC, MUTEVAL_A, O>;
impl<'a, const O: u8> MUTEVAL_W<'a, O> {
    #[doc = "Bit value 0 is sent during the mute mode"]
    #[inline(always)]
    pub fn send_zero(self) -> &'a mut W {
        self.variant(MUTEVAL_A::SendZero)
    }
    #[doc = "Last values are sent during the mute mode"]
    #[inline(always)]
    pub fn send_last(self) -> &'a mut W {
        self.variant(MUTEVAL_A::SendLast)
    }
}
#[doc = "Field `MUTECNT` reader - Mute counter. These bits are set and cleared by software. They are used only in reception mode. The value set in these bits is compared to the number of consecutive mute frames detected in reception. When the number of mute frames is equal to this value, the flag MUTEDET will be set and an interrupt will be generated if bit MUTEDETIE is set. Refer to Section: Mute mode for more details."]
pub type MUTECNT_R = crate::FieldReader<u8, u8>;
#[doc = "Field `MUTECNT` writer - Mute counter. These bits are set and cleared by software. They are used only in reception mode. The value set in these bits is compared to the number of consecutive mute frames detected in reception. When the number of mute frames is equal to this value, the flag MUTEDET will be set and an interrupt will be generated if bit MUTEDETIE is set. Refer to Section: Mute mode for more details."]
pub type MUTECNT_W<'a, const O: u8> = crate::FieldWriter<'a, u32, CR2_SPEC, u8, u8, 6, O>;
#[doc = "Complement bit. This bit is set and cleared by software. It defines the type of complement to be used for companding mode Note: This bit has effect only when the companding mode is -Law algorithm or A-Law algorithm.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum CPL_A {
    #[doc = "0: 1’s complement representation"]
    OnesComplement = 0,
    #[doc = "1: 2’s complement representation"]
    TwosComplement = 1,
}
impl From<CPL_A> for bool {
    #[inline(always)]
    fn from(variant: CPL_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `CPL` reader - Complement bit. This bit is set and cleared by software. It defines the type of complement to be used for companding mode Note: This bit has effect only when the companding mode is -Law algorithm or A-Law algorithm."]
pub type CPL_R = crate::BitReader<CPL_A>;
impl CPL_R {
    #[doc = "Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> CPL_A {
        match self.bits {
            false => CPL_A::OnesComplement,
            true => CPL_A::TwosComplement,
        }
    }
    #[doc = "Checks if the value of the field is `OnesComplement`"]
    #[inline(always)]
    pub fn is_ones_complement(&self) -> bool {
        *self == CPL_A::OnesComplement
    }
    #[doc = "Checks if the value of the field is `TwosComplement`"]
    #[inline(always)]
    pub fn is_twos_complement(&self) -> bool {
        *self == CPL_A::TwosComplement
    }
}
#[doc = "Field `CPL` writer - Complement bit. This bit is set and cleared by software. It defines the type of complement to be used for companding mode Note: This bit has effect only when the companding mode is -Law algorithm or A-Law algorithm."]
pub type CPL_W<'a, const O: u8> = crate::BitWriter<'a, u32, CR2_SPEC, CPL_A, O>;
impl<'a, const O: u8> CPL_W<'a, O> {
    #[doc = "1’s complement representation"]
    #[inline(always)]
    pub fn ones_complement(self) -> &'a mut W {
        self.variant(CPL_A::OnesComplement)
    }
    #[doc = "2’s complement representation"]
    #[inline(always)]
    pub fn twos_complement(self) -> &'a mut W {
        self.variant(CPL_A::TwosComplement)
    }
}
#[doc = "Companding mode. These bits are set and cleared by software. The -Law and the A-Law log are a part of the CCITT G.711 recommendation, the type of complement that will be used depends on CPL bit. The data expansion or data compression are determined by the state of bit MODE\\[0\\]. The data compression is applied if the audio block is configured as a transmitter. The data expansion is automatically applied when the audio block is configured as a receiver. Refer to Section: Companding mode for more details. Note: Companding mode is applicable only when TDM is selected.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
#[repr(u8)]
pub enum COMP_A {
    #[doc = "0: No companding algorithm"]
    NoCompanding = 0,
    #[doc = "2: μ-Law algorithm"]
    MuLaw = 2,
    #[doc = "3: A-Law algorithm"]
    Alaw = 3,
}
impl From<COMP_A> for u8 {
    #[inline(always)]
    fn from(variant: COMP_A) -> Self {
        variant as _
    }
}
#[doc = "Field `COMP` reader - Companding mode. These bits are set and cleared by software. The -Law and the A-Law log are a part of the CCITT G.711 recommendation, the type of complement that will be used depends on CPL bit. The data expansion or data compression are determined by the state of bit MODE\\[0\\]. The data compression is applied if the audio block is configured as a transmitter. The data expansion is automatically applied when the audio block is configured as a receiver. Refer to Section: Companding mode for more details. Note: Companding mode is applicable only when TDM is selected."]
pub type COMP_R = crate::FieldReader<u8, COMP_A>;
impl COMP_R {
    #[doc = "Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> Option<COMP_A> {
        match self.bits {
            0 => Some(COMP_A::NoCompanding),
            2 => Some(COMP_A::MuLaw),
            3 => Some(COMP_A::Alaw),
            _ => None,
        }
    }
    #[doc = "Checks if the value of the field is `NoCompanding`"]
    #[inline(always)]
    pub fn is_no_companding(&self) -> bool {
        *self == COMP_A::NoCompanding
    }
    #[doc = "Checks if the value of the field is `MuLaw`"]
    #[inline(always)]
    pub fn is_mu_law(&self) -> bool {
        *self == COMP_A::MuLaw
    }
    #[doc = "Checks if the value of the field is `Alaw`"]
    #[inline(always)]
    pub fn is_alaw(&self) -> bool {
        *self == COMP_A::Alaw
    }
}
#[doc = "Field `COMP` writer - Companding mode. These bits are set and cleared by software. The -Law and the A-Law log are a part of the CCITT G.711 recommendation, the type of complement that will be used depends on CPL bit. The data expansion or data compression are determined by the state of bit MODE\\[0\\]. The data compression is applied if the audio block is configured as a transmitter. The data expansion is automatically applied when the audio block is configured as a receiver. Refer to Section: Companding mode for more details. Note: Companding mode is applicable only when TDM is selected."]
pub type COMP_W<'a, const O: u8> = crate::FieldWriter<'a, u32, CR2_SPEC, u8, COMP_A, 2, O>;
impl<'a, const O: u8> COMP_W<'a, O> {
    #[doc = "No companding algorithm"]
    #[inline(always)]
    pub fn no_companding(self) -> &'a mut W {
        self.variant(COMP_A::NoCompanding)
    }
    #[doc = "μ-Law algorithm"]
    #[inline(always)]
    pub fn mu_law(self) -> &'a mut W {
        self.variant(COMP_A::MuLaw)
    }
    #[doc = "A-Law algorithm"]
    #[inline(always)]
    pub fn alaw(self) -> &'a mut W {
        self.variant(COMP_A::Alaw)
    }
}
impl R {
    #[doc = "Bits 0:2 - FIFO threshold. This bit is set and cleared by software."]
    #[inline(always)]
    pub fn fth(&self) -> FTH_R {
        FTH_R::new((self.bits & 7) as u8)
    }
    #[doc = "Bit 4 - Tristate management on data line. This bit is set and cleared by software. It is meaningful only if the audio block is configured as a transmitter. This bit is not used when the audio block is configured in SPDIF mode. It should be configured when SAI is disabled. Refer to Section: Output data line management on an inactive slot for more details."]
    #[inline(always)]
    pub fn tris(&self) -> TRIS_R {
        TRIS_R::new(((self.bits >> 4) & 1) != 0)
    }
    #[doc = "Bit 5 - Mute. This bit is set and cleared by software. It is meaningful only when the audio block operates as a transmitter. The MUTE value is linked to value of MUTEVAL if the number of slots is lower or equal to 2, or equal to 0 if it is greater than 2. Refer to Section: Mute mode for more details. Note: This bit is meaningless and should not be used for SPDIF audio blocks."]
    #[inline(always)]
    pub fn mute(&self) -> MUTE_R {
        MUTE_R::new(((self.bits >> 5) & 1) != 0)
    }
    #[doc = "Bit 6 - Mute value. This bit is set and cleared by software.It must be written before enabling the audio block: SAIXEN. This bit is meaningful only when the audio block operates as a transmitter, the number of slots is lower or equal to 2 and the MUTE bit is set. If more slots are declared, the bit value sent during the transmission in mute mode is equal to 0, whatever the value of MUTEVAL. if the number of slot is lower or equal to 2 and MUTEVAL = 1, the MUTE value transmitted for each slot is the one sent during the previous frame. Refer to Section: Mute mode for more details. Note: This bit is meaningless and should not be used for SPDIF audio blocks."]
    #[inline(always)]
    pub fn muteval(&self) -> MUTEVAL_R {
        MUTEVAL_R::new(((self.bits >> 6) & 1) != 0)
    }
    #[doc = "Bits 7:12 - Mute counter. These bits are set and cleared by software. They are used only in reception mode. The value set in these bits is compared to the number of consecutive mute frames detected in reception. When the number of mute frames is equal to this value, the flag MUTEDET will be set and an interrupt will be generated if bit MUTEDETIE is set. Refer to Section: Mute mode for more details."]
    #[inline(always)]
    pub fn mutecnt(&self) -> MUTECNT_R {
        MUTECNT_R::new(((self.bits >> 7) & 0x3f) as u8)
    }
    #[doc = "Bit 13 - Complement bit. This bit is set and cleared by software. It defines the type of complement to be used for companding mode Note: This bit has effect only when the companding mode is -Law algorithm or A-Law algorithm."]
    #[inline(always)]
    pub fn cpl(&self) -> CPL_R {
        CPL_R::new(((self.bits >> 13) & 1) != 0)
    }
    #[doc = "Bits 14:15 - Companding mode. These bits are set and cleared by software. The -Law and the A-Law log are a part of the CCITT G.711 recommendation, the type of complement that will be used depends on CPL bit. The data expansion or data compression are determined by the state of bit MODE\\[0\\]. The data compression is applied if the audio block is configured as a transmitter. The data expansion is automatically applied when the audio block is configured as a receiver. Refer to Section: Companding mode for more details. Note: Companding mode is applicable only when TDM is selected."]
    #[inline(always)]
    pub fn comp(&self) -> COMP_R {
        COMP_R::new(((self.bits >> 14) & 3) as u8)
    }
}
impl W {
    #[doc = "Bits 0:2 - FIFO threshold. This bit is set and cleared by software."]
    #[inline(always)]
    pub fn fth(&mut self) -> FTH_W<0> {
        FTH_W::new(self)
    }
    #[doc = "Bit 3 - FIFO flush. This bit is set by software. It is always read as 0. This bit should be configured when the SAI is disabled."]
    #[inline(always)]
    pub fn fflush(&mut self) -> FFLUSH_W<3> {
        FFLUSH_W::new(self)
    }
    #[doc = "Bit 4 - Tristate management on data line. This bit is set and cleared by software. It is meaningful only if the audio block is configured as a transmitter. This bit is not used when the audio block is configured in SPDIF mode. It should be configured when SAI is disabled. Refer to Section: Output data line management on an inactive slot for more details."]
    #[inline(always)]
    pub fn tris(&mut self) -> TRIS_W<4> {
        TRIS_W::new(self)
    }
    #[doc = "Bit 5 - Mute. This bit is set and cleared by software. It is meaningful only when the audio block operates as a transmitter. The MUTE value is linked to value of MUTEVAL if the number of slots is lower or equal to 2, or equal to 0 if it is greater than 2. Refer to Section: Mute mode for more details. Note: This bit is meaningless and should not be used for SPDIF audio blocks."]
    #[inline(always)]
    pub fn mute(&mut self) -> MUTE_W<5> {
        MUTE_W::new(self)
    }
    #[doc = "Bit 6 - Mute value. This bit is set and cleared by software.It must be written before enabling the audio block: SAIXEN. This bit is meaningful only when the audio block operates as a transmitter, the number of slots is lower or equal to 2 and the MUTE bit is set. If more slots are declared, the bit value sent during the transmission in mute mode is equal to 0, whatever the value of MUTEVAL. if the number of slot is lower or equal to 2 and MUTEVAL = 1, the MUTE value transmitted for each slot is the one sent during the previous frame. Refer to Section: Mute mode for more details. Note: This bit is meaningless and should not be used for SPDIF audio blocks."]
    #[inline(always)]
    pub fn muteval(&mut self) -> MUTEVAL_W<6> {
        MUTEVAL_W::new(self)
    }
    #[doc = "Bits 7:12 - Mute counter. These bits are set and cleared by software. They are used only in reception mode. The value set in these bits is compared to the number of consecutive mute frames detected in reception. When the number of mute frames is equal to this value, the flag MUTEDET will be set and an interrupt will be generated if bit MUTEDETIE is set. Refer to Section: Mute mode for more details."]
    #[inline(always)]
    pub fn mutecnt(&mut self) -> MUTECNT_W<7> {
        MUTECNT_W::new(self)
    }
    #[doc = "Bit 13 - Complement bit. This bit is set and cleared by software. It defines the type of complement to be used for companding mode Note: This bit has effect only when the companding mode is -Law algorithm or A-Law algorithm."]
    #[inline(always)]
    pub fn cpl(&mut self) -> CPL_W<13> {
        CPL_W::new(self)
    }
    #[doc = "Bits 14:15 - Companding mode. These bits are set and cleared by software. The -Law and the A-Law log are a part of the CCITT G.711 recommendation, the type of complement that will be used depends on CPL bit. The data expansion or data compression are determined by the state of bit MODE\\[0\\]. The data compression is applied if the audio block is configured as a transmitter. The data expansion is automatically applied when the audio block is configured as a receiver. Refer to Section: Companding mode for more details. Note: Companding mode is applicable only when TDM is selected."]
    #[inline(always)]
    pub fn comp(&mut self) -> COMP_W<14> {
        COMP_W::new(self)
    }
    #[doc = "Writes raw bits to the register."]
    #[inline(always)]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.0.bits(bits);
        self
    }
}
#[doc = "Configuration register 2\n\nThis register you can [`read`](crate::generic::Reg::read), [`write_with_zero`](crate::generic::Reg::write_with_zero), [`reset`](crate::generic::Reg::reset), [`write`](crate::generic::Reg::write), [`modify`](crate::generic::Reg::modify). See [API](https://docs.rs/svd2rust/#read--modify--write-api).\n\nFor information about available fields see [cr2](index.html) module"]
pub struct CR2_SPEC;
impl crate::RegisterSpec for CR2_SPEC {
    type Ux = u32;
}
#[doc = "`read()` method returns [cr2::R](R) reader structure"]
impl crate::Readable for CR2_SPEC {
    type Reader = R;
}
#[doc = "`write(|w| ..)` method takes [cr2::W](W) writer structure"]
impl crate::Writable for CR2_SPEC {
    type Writer = W;
}
#[doc = "`reset()` method sets CR2 to value 0"]
impl crate::Resettable for CR2_SPEC {
    #[inline(always)]
    fn reset_value() -> Self::Ux {
        0
    }
}