1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#[doc = r"Value read from the register"]
pub struct R {
    bits: u32,
}
impl super::ISR {
    #[doc = r"Reads the contents of the register"]
    #[inline(always)]
    pub fn read(&self) -> R {
        R {
            bits: self.register.get(),
        }
    }
}
#[doc = r"Value of the field"]
pub struct SYNCOKFR {
    bits: bool,
}
impl SYNCOKFR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r"Returns `true` if the bit is clear (0)"]
    #[inline(always)]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r"Returns `true` if the bit is set (1)"]
    #[inline(always)]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r"Value of the field"]
pub struct SYNCWARNFR {
    bits: bool,
}
impl SYNCWARNFR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r"Returns `true` if the bit is clear (0)"]
    #[inline(always)]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r"Returns `true` if the bit is set (1)"]
    #[inline(always)]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r"Value of the field"]
pub struct ERRFR {
    bits: bool,
}
impl ERRFR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r"Returns `true` if the bit is clear (0)"]
    #[inline(always)]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r"Returns `true` if the bit is set (1)"]
    #[inline(always)]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r"Value of the field"]
pub struct ESYNCFR {
    bits: bool,
}
impl ESYNCFR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r"Returns `true` if the bit is clear (0)"]
    #[inline(always)]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r"Returns `true` if the bit is set (1)"]
    #[inline(always)]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r"Value of the field"]
pub struct SYNCERRR {
    bits: bool,
}
impl SYNCERRR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r"Returns `true` if the bit is clear (0)"]
    #[inline(always)]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r"Returns `true` if the bit is set (1)"]
    #[inline(always)]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r"Value of the field"]
pub struct SYNCMISSR {
    bits: bool,
}
impl SYNCMISSR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r"Returns `true` if the bit is clear (0)"]
    #[inline(always)]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r"Returns `true` if the bit is set (1)"]
    #[inline(always)]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r"Value of the field"]
pub struct TRIMOVFR {
    bits: bool,
}
impl TRIMOVFR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r"Returns `true` if the bit is clear (0)"]
    #[inline(always)]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r"Returns `true` if the bit is set (1)"]
    #[inline(always)]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r"Value of the field"]
pub struct FEDIRR {
    bits: bool,
}
impl FEDIRR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r"Returns `true` if the bit is clear (0)"]
    #[inline(always)]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r"Returns `true` if the bit is set (1)"]
    #[inline(always)]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r"Value of the field"]
pub struct FECAPR {
    bits: u16,
}
impl FECAPR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bits(&self) -> u16 {
        self.bits
    }
}
impl R {
    #[doc = r"Value of the register as raw bits"]
    #[inline(always)]
    pub fn bits(&self) -> u32 {
        self.bits
    }
    #[doc = "Bit 0 - SYNC event OK flag This flag is set by hardware when the measured frequency error is smaller than FELIM * 3. This means that either no adjustment of the TRIM value is needed or that an adjustment by one trimming step is enough to compensate the frequency error. An interrupt is generated if the SYNCOKIE bit is set in the CRS_CR register. It is cleared by software by setting the SYNCOKC bit in the CRS_ICR register."]
    #[inline(always)]
    pub fn syncokf(&self) -> SYNCOKFR {
        let bits = ((self.bits >> 0) & 0x01) != 0;
        SYNCOKFR { bits }
    }
    #[doc = "Bit 1 - SYNC warning flag This flag is set by hardware when the measured frequency error is greater than or equal to FELIM * 3, but smaller than FELIM * 128. This means that to compensate the frequency error, the TRIM value must be adjusted by two steps or more. An interrupt is generated if the SYNCWARNIE bit is set in the CRS_CR register. It is cleared by software by setting the SYNCWARNC bit in the CRS_ICR register."]
    #[inline(always)]
    pub fn syncwarnf(&self) -> SYNCWARNFR {
        let bits = ((self.bits >> 1) & 0x01) != 0;
        SYNCWARNFR { bits }
    }
    #[doc = "Bit 2 - Error flag This flag is set by hardware in case of any synchronization or trimming error. It is the logical OR of the TRIMOVF, SYNCMISS and SYNCERR bits. An interrupt is generated if the ERRIE bit is set in the CRS_CR register. It is cleared by software in reaction to setting the ERRC bit in the CRS_ICR register, which clears the TRIMOVF, SYNCMISS and SYNCERR bits."]
    #[inline(always)]
    pub fn errf(&self) -> ERRFR {
        let bits = ((self.bits >> 2) & 0x01) != 0;
        ERRFR { bits }
    }
    #[doc = "Bit 3 - Expected SYNC flag This flag is set by hardware when the frequency error counter reached a zero value. An interrupt is generated if the ESYNCIE bit is set in the CRS_CR register. It is cleared by software by setting the ESYNCC bit in the CRS_ICR register."]
    #[inline(always)]
    pub fn esyncf(&self) -> ESYNCFR {
        let bits = ((self.bits >> 3) & 0x01) != 0;
        ESYNCFR { bits }
    }
    #[doc = "Bit 8 - SYNC error This flag is set by hardware when the SYNC pulse arrives before the ESYNC event and the measured frequency error is greater than or equal to FELIM * 128. This means that the frequency error is too big (internal frequency too low) to be compensated by adjusting the TRIM value, and that some other action should be taken. An interrupt is generated if the ERRIE bit is set in the CRS_CR register. It is cleared by software by setting the ERRC bit in the CRS_ICR register."]
    #[inline(always)]
    pub fn syncerr(&self) -> SYNCERRR {
        let bits = ((self.bits >> 8) & 0x01) != 0;
        SYNCERRR { bits }
    }
    #[doc = "Bit 9 - SYNC missed This flag is set by hardware when the frequency error counter reached value FELIM * 128 and no SYNC was detected, meaning either that a SYNC pulse was missed or that the frequency error is too big (internal frequency too high) to be compensated by adjusting the TRIM value, and that some other action should be taken. At this point, the frequency error counter is stopped (waiting for a next SYNC) and an interrupt is generated if the ERRIE bit is set in the CRS_CR register. It is cleared by software by setting the ERRC bit in the CRS_ICR register."]
    #[inline(always)]
    pub fn syncmiss(&self) -> SYNCMISSR {
        let bits = ((self.bits >> 9) & 0x01) != 0;
        SYNCMISSR { bits }
    }
    #[doc = "Bit 10 - Trimming overflow or underflow This flag is set by hardware when the automatic trimming tries to over- or under-flow the TRIM value. An interrupt is generated if the ERRIE bit is set in the CRS_CR register. It is cleared by software by setting the ERRC bit in the CRS_ICR register."]
    #[inline(always)]
    pub fn trimovf(&self) -> TRIMOVFR {
        let bits = ((self.bits >> 10) & 0x01) != 0;
        TRIMOVFR { bits }
    }
    #[doc = "Bit 15 - Frequency error direction FEDIR is the counting direction of the frequency error counter latched in the time of the last SYNC event. It shows whether the actual frequency is below or above the target."]
    #[inline(always)]
    pub fn fedir(&self) -> FEDIRR {
        let bits = ((self.bits >> 15) & 0x01) != 0;
        FEDIRR { bits }
    }
    #[doc = "Bits 16:31 - Frequency error capture FECAP is the frequency error counter value latched in the time of the last SYNC event. Refer to Section7.3.4: Frequency error evaluation and automatic trimming for more details about FECAP usage."]
    #[inline(always)]
    pub fn fecap(&self) -> FECAPR {
        let bits = ((self.bits >> 16) & 0xffff) as u16;
        FECAPR { bits }
    }
}