1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#[doc = r"Value read from the register"]
pub struct R {
    bits: u32,
}
#[doc = r"Value to write to the register"]
pub struct W {
    bits: u32,
}
impl super::CFGR {
    #[doc = r"Modifies the contents of the register"]
    #[inline(always)]
    pub fn modify<F>(&self, f: F)
    where
        for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
    {
        let bits = self.register.get();
        self.register.set(f(&R { bits }, &mut W { bits }).bits);
    }
    #[doc = r"Reads the contents of the register"]
    #[inline(always)]
    pub fn read(&self) -> R {
        R {
            bits: self.register.get(),
        }
    }
    #[doc = r"Writes to the register"]
    #[inline(always)]
    pub fn write<F>(&self, f: F)
    where
        F: FnOnce(&mut W) -> &mut W,
    {
        self.register.set(
            f(&mut W {
                bits: Self::reset_value(),
            })
            .bits,
        );
    }
    #[doc = r"Reset value of the register"]
    #[inline(always)]
    pub const fn reset_value() -> u32 {
        0x2022_bb7f
    }
    #[doc = r"Writes the reset value to the register"]
    #[inline(always)]
    pub fn reset(&self) {
        self.register.set(Self::reset_value())
    }
}
#[doc = r"Value of the field"]
pub struct RELOADR {
    bits: u16,
}
impl RELOADR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bits(&self) -> u16 {
        self.bits
    }
}
#[doc = r"Proxy"]
pub struct _RELOADW<'a> {
    w: &'a mut W,
}
impl<'a> _RELOADW<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u16) -> &'a mut W {
        self.w.bits &= !(0xffff << 0);
        self.w.bits |= ((value as u32) & 0xffff) << 0;
        self.w
    }
}
#[doc = r"Value of the field"]
pub struct FELIMR {
    bits: u8,
}
impl FELIMR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r"Proxy"]
pub struct _FELIMW<'a> {
    w: &'a mut W,
}
impl<'a> _FELIMW<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits &= !(0xff << 16);
        self.w.bits |= ((value as u32) & 0xff) << 16;
        self.w
    }
}
#[doc = r"Value of the field"]
pub struct SYNCDIVR {
    bits: u8,
}
impl SYNCDIVR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r"Proxy"]
pub struct _SYNCDIVW<'a> {
    w: &'a mut W,
}
impl<'a> _SYNCDIVW<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits &= !(0x07 << 24);
        self.w.bits |= ((value as u32) & 0x07) << 24;
        self.w
    }
}
#[doc = r"Value of the field"]
pub struct SYNCSRCR {
    bits: u8,
}
impl SYNCSRCR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r"Proxy"]
pub struct _SYNCSRCW<'a> {
    w: &'a mut W,
}
impl<'a> _SYNCSRCW<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits &= !(0x03 << 28);
        self.w.bits |= ((value as u32) & 0x03) << 28;
        self.w
    }
}
#[doc = r"Value of the field"]
pub struct SYNCPOLR {
    bits: bool,
}
impl SYNCPOLR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r"Returns `true` if the bit is clear (0)"]
    #[inline(always)]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r"Returns `true` if the bit is set (1)"]
    #[inline(always)]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r"Proxy"]
pub struct _SYNCPOLW<'a> {
    w: &'a mut W,
}
impl<'a> _SYNCPOLW<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits &= !(0x01 << 31);
        self.w.bits |= ((value as u32) & 0x01) << 31;
        self.w
    }
}
impl R {
    #[doc = r"Value of the register as raw bits"]
    #[inline(always)]
    pub fn bits(&self) -> u32 {
        self.bits
    }
    #[doc = "Bits 0:15 - Counter reload value RELOAD is the value to be loaded in the frequency error counter with each SYNC event. Refer to Section7.3.3: Frequency error measurement for more details about counter behavior."]
    #[inline(always)]
    pub fn reload(&self) -> RELOADR {
        let bits = ((self.bits >> 0) & 0xffff) as u16;
        RELOADR { bits }
    }
    #[doc = "Bits 16:23 - Frequency error limit FELIM contains the value to be used to evaluate the captured frequency error value latched in the FECAP\\[15:0\\] bits of the CRS_ISR register. Refer to Section7.3.4: Frequency error evaluation and automatic trimming for more details about FECAP evaluation."]
    #[inline(always)]
    pub fn felim(&self) -> FELIMR {
        let bits = ((self.bits >> 16) & 0xff) as u8;
        FELIMR { bits }
    }
    #[doc = "Bits 24:26 - SYNC divider These bits are set and cleared by software to control the division factor of the SYNC signal."]
    #[inline(always)]
    pub fn syncdiv(&self) -> SYNCDIVR {
        let bits = ((self.bits >> 24) & 0x07) as u8;
        SYNCDIVR { bits }
    }
    #[doc = "Bits 28:29 - SYNC signal source selection These bits are set and cleared by software to select the SYNC signal source. Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the periodic USB SOF will not be generated by the host. No SYNC signal will therefore be provided to the CRS to calibrate the HSI48 on the run. To guarantee the required clock precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs should be used as SYNC signal."]
    #[inline(always)]
    pub fn syncsrc(&self) -> SYNCSRCR {
        let bits = ((self.bits >> 28) & 0x03) as u8;
        SYNCSRCR { bits }
    }
    #[doc = "Bit 31 - SYNC polarity selection This bit is set and cleared by software to select the input polarity for the SYNC signal source."]
    #[inline(always)]
    pub fn syncpol(&self) -> SYNCPOLR {
        let bits = ((self.bits >> 31) & 0x01) != 0;
        SYNCPOLR { bits }
    }
}
impl W {
    #[doc = r"Writes raw bits to the register"]
    #[inline(always)]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
    #[doc = "Bits 0:15 - Counter reload value RELOAD is the value to be loaded in the frequency error counter with each SYNC event. Refer to Section7.3.3: Frequency error measurement for more details about counter behavior."]
    #[inline(always)]
    pub fn reload(&mut self) -> _RELOADW {
        _RELOADW { w: self }
    }
    #[doc = "Bits 16:23 - Frequency error limit FELIM contains the value to be used to evaluate the captured frequency error value latched in the FECAP\\[15:0\\] bits of the CRS_ISR register. Refer to Section7.3.4: Frequency error evaluation and automatic trimming for more details about FECAP evaluation."]
    #[inline(always)]
    pub fn felim(&mut self) -> _FELIMW {
        _FELIMW { w: self }
    }
    #[doc = "Bits 24:26 - SYNC divider These bits are set and cleared by software to control the division factor of the SYNC signal."]
    #[inline(always)]
    pub fn syncdiv(&mut self) -> _SYNCDIVW {
        _SYNCDIVW { w: self }
    }
    #[doc = "Bits 28:29 - SYNC signal source selection These bits are set and cleared by software to select the SYNC signal source. Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the periodic USB SOF will not be generated by the host. No SYNC signal will therefore be provided to the CRS to calibrate the HSI48 on the run. To guarantee the required clock precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs should be used as SYNC signal."]
    #[inline(always)]
    pub fn syncsrc(&mut self) -> _SYNCSRCW {
        _SYNCSRCW { w: self }
    }
    #[doc = "Bit 31 - SYNC polarity selection This bit is set and cleared by software to select the input polarity for the SYNC signal source."]
    #[inline(always)]
    pub fn syncpol(&mut self) -> _SYNCPOLW {
        _SYNCPOLW { w: self }
    }
}