1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#[doc = r"Value read from the register"]
pub struct R {
    bits: u32,
}
#[doc = r"Value to write to the register"]
pub struct W {
    bits: u32,
}
impl super::BTR4 {
    #[doc = r"Modifies the contents of the register"]
    #[inline(always)]
    pub fn modify<F>(&self, f: F)
    where
        for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
    {
        let bits = self.register.get();
        self.register.set(f(&R { bits }, &mut W { bits }).bits);
    }
    #[doc = r"Reads the contents of the register"]
    #[inline(always)]
    pub fn read(&self) -> R {
        R {
            bits: self.register.get(),
        }
    }
    #[doc = r"Writes to the register"]
    #[inline(always)]
    pub fn write<F>(&self, f: F)
    where
        F: FnOnce(&mut W) -> &mut W,
    {
        self.register.set(
            f(&mut W {
                bits: Self::reset_value(),
            })
            .bits,
        );
    }
    #[doc = r"Reset value of the register"]
    #[inline(always)]
    pub const fn reset_value() -> u32 {
        0x0fff_ffff
    }
    #[doc = r"Writes the reset value to the register"]
    #[inline(always)]
    pub fn reset(&self) {
        self.register.set(Self::reset_value())
    }
}
#[doc = r"Value of the field"]
pub struct ADDSETR {
    bits: u8,
}
impl ADDSETR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r"Proxy"]
pub struct _ADDSETW<'a> {
    w: &'a mut W,
}
impl<'a> _ADDSETW<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits &= !(0x0f << 0);
        self.w.bits |= ((value as u32) & 0x0f) << 0;
        self.w
    }
}
#[doc = r"Value of the field"]
pub struct ADDHLDR {
    bits: u8,
}
impl ADDHLDR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r"Proxy"]
pub struct _ADDHLDW<'a> {
    w: &'a mut W,
}
impl<'a> _ADDHLDW<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits &= !(0x0f << 4);
        self.w.bits |= ((value as u32) & 0x0f) << 4;
        self.w
    }
}
#[doc = r"Value of the field"]
pub struct DATASTR {
    bits: u8,
}
impl DATASTR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r"Proxy"]
pub struct _DATASTW<'a> {
    w: &'a mut W,
}
impl<'a> _DATASTW<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits &= !(0xff << 8);
        self.w.bits |= ((value as u32) & 0xff) << 8;
        self.w
    }
}
#[doc = r"Value of the field"]
pub struct BUSTURNR {
    bits: u8,
}
impl BUSTURNR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r"Proxy"]
pub struct _BUSTURNW<'a> {
    w: &'a mut W,
}
impl<'a> _BUSTURNW<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits &= !(0x0f << 16);
        self.w.bits |= ((value as u32) & 0x0f) << 16;
        self.w
    }
}
#[doc = r"Value of the field"]
pub struct CLKDIVR {
    bits: u8,
}
impl CLKDIVR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r"Proxy"]
pub struct _CLKDIVW<'a> {
    w: &'a mut W,
}
impl<'a> _CLKDIVW<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits &= !(0x0f << 20);
        self.w.bits |= ((value as u32) & 0x0f) << 20;
        self.w
    }
}
#[doc = r"Value of the field"]
pub struct DATLATR {
    bits: u8,
}
impl DATLATR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r"Proxy"]
pub struct _DATLATW<'a> {
    w: &'a mut W,
}
impl<'a> _DATLATW<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits &= !(0x0f << 24);
        self.w.bits |= ((value as u32) & 0x0f) << 24;
        self.w
    }
}
#[doc = r"Value of the field"]
pub struct ACCMODR {
    bits: u8,
}
impl ACCMODR {
    #[doc = r"Value of the field as raw bits"]
    #[inline(always)]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r"Proxy"]
pub struct _ACCMODW<'a> {
    w: &'a mut W,
}
impl<'a> _ACCMODW<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits &= !(0x03 << 28);
        self.w.bits |= ((value as u32) & 0x03) << 28;
        self.w
    }
}
impl R {
    #[doc = r"Value of the register as raw bits"]
    #[inline(always)]
    pub fn bits(&self) -> u32 {
        self.bits
    }
    #[doc = "Bits 0:3 - Address setup phase duration These bits are written by software to define the duration of the address setup phase (refer to Figure81 to Figure93), used in SRAMs, ROMs and asynchronous NOR Flash: For each access mode address setup phase duration, please refer to the respective figure (refer to Figure81 to Figure93). Note: In synchronous accesses, this value is dont care. In Muxed mode or Mode D, the minimum value for ADDSET is 1."]
    #[inline(always)]
    pub fn addset(&self) -> ADDSETR {
        let bits = ((self.bits >> 0) & 0x0f) as u8;
        ADDSETR { bits }
    }
    #[doc = "Bits 4:7 - Address-hold phase duration These bits are written by software to define the duration of the address hold phase (refer to Figure81 to Figure93), used in mode D or multiplexed accesses: For each access mode address-hold phase duration, please refer to the respective figure (Figure81 to Figure93). Note: In synchronous accesses, this value is not used, the address hold phase is always 1 memory clock period duration."]
    #[inline(always)]
    pub fn addhld(&self) -> ADDHLDR {
        let bits = ((self.bits >> 4) & 0x0f) as u8;
        ADDHLDR { bits }
    }
    #[doc = "Bits 8:15 - Data-phase duration These bits are written by software to define the duration of the data phase (refer to Figure81 to Figure93), used in asynchronous accesses: For each memory type and access mode data-phase duration, please refer to the respective figure (Figure81 to Figure93). Example: Mode1, write access, DATAST=1: Data-phase duration= DATAST+1 = 2 KCK_FMC clock cycles. Note: In synchronous accesses, this value is dont care."]
    #[inline(always)]
    pub fn datast(&self) -> DATASTR {
        let bits = ((self.bits >> 8) & 0xff) as u8;
        DATASTR { bits }
    }
    #[doc = "Bits 16:19 - Bus turnaround phase duration These bits are written by software to add a delay at the end of a write-to-read or read-to write transaction. The programmed bus turnaround delay is inserted between an asynchronous read (in muxed or mode D) or write transaction and any other asynchronous /synchronous read/write from/to a static bank. If a read operation is performed, the bank can be the same or a different one, whereas it must be different in case of write operation to the bank, except in muxed mode or mode D. In some cases, whatever the programmed BUSTRUN values, the bus turnaround delay is fixed as follows: The bus turnaround delay is not inserted between two consecutive asynchronous write transfers to the same static memory bank except in muxed mode and mode D. There is a bus turnaround delay of 1 FMC clock cycle between: Two consecutive asynchronous read transfers to the same static memory bank except for modes muxed and D. An asynchronous read to an asynchronous or synchronous write to any static bank or dynamic bank except in modes muxed and D mode. There is a bus turnaround delay of 2 FMC clock cycle between: Two consecutive synchronous write operations (in Burst or Single mode) to the same bank. A synchronous write (burst or single) access and an asynchronous write or read transfer to or from static memory bank (the bank can be the same or a different one in case of a read operation. Two consecutive synchronous read operations (in Burst or Single mode) followed by any synchronous/asynchronous read or write from/to another static memory bank. There is a bus turnaround delay of 3 FMC clock cycle between: Two consecutive synchronous write operations (in Burst or Single mode) to different static banks. A synchronous write access (in Burst or Single mode) and a synchronous read from the same or a different bank. The bus turnaround delay allows to match the minimum time between consecutive transactions (tEHEL from NEx high to NEx low) and the maximum time required by the memory to free the data bus after a read access (tEHQZ): (BUSTRUN + 1) KCK_FMC period &#8805; tEHELmin and (BUSTRUN + 2)KCK_FMC period &#8805; tEHQZmax if EXTMOD = 0 (BUSTRUN + 2)KCK_FMC period &#8805; max (tEHELmin, tEHQZmax) if EXTMOD =1. ..."]
    #[inline(always)]
    pub fn busturn(&self) -> BUSTURNR {
        let bits = ((self.bits >> 16) & 0x0f) as u8;
        BUSTURNR { bits }
    }
    #[doc = "Bits 20:23 - Clock divide ratio (for FMC_CLK signal) These bits define the period of FMC_CLK clock output signal, expressed in number of KCK_FMC cycles: In asynchronous NOR Flash, SRAM or PSRAM accesses, this value is dont care. Note: Refer to Section20.6.5: Synchronous transactions for FMC_CLK divider ratio formula)"]
    #[inline(always)]
    pub fn clkdiv(&self) -> CLKDIVR {
        let bits = ((self.bits >> 20) & 0x0f) as u8;
        CLKDIVR { bits }
    }
    #[doc = "Bits 24:27 - Data latency for synchronous memory For synchronous access with read write burst mode enabled these bits define the number of memory clock cycles"]
    #[inline(always)]
    pub fn datlat(&self) -> DATLATR {
        let bits = ((self.bits >> 24) & 0x0f) as u8;
        DATLATR { bits }
    }
    #[doc = "Bits 28:29 - Access mode These bits specify the asynchronous access modes as shown in the timing diagrams. They are taken into account only when the EXTMOD bit in the FMC_BCRx register is 1."]
    #[inline(always)]
    pub fn accmod(&self) -> ACCMODR {
        let bits = ((self.bits >> 28) & 0x03) as u8;
        ACCMODR { bits }
    }
}
impl W {
    #[doc = r"Writes raw bits to the register"]
    #[inline(always)]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
    #[doc = "Bits 0:3 - Address setup phase duration These bits are written by software to define the duration of the address setup phase (refer to Figure81 to Figure93), used in SRAMs, ROMs and asynchronous NOR Flash: For each access mode address setup phase duration, please refer to the respective figure (refer to Figure81 to Figure93). Note: In synchronous accesses, this value is dont care. In Muxed mode or Mode D, the minimum value for ADDSET is 1."]
    #[inline(always)]
    pub fn addset(&mut self) -> _ADDSETW {
        _ADDSETW { w: self }
    }
    #[doc = "Bits 4:7 - Address-hold phase duration These bits are written by software to define the duration of the address hold phase (refer to Figure81 to Figure93), used in mode D or multiplexed accesses: For each access mode address-hold phase duration, please refer to the respective figure (Figure81 to Figure93). Note: In synchronous accesses, this value is not used, the address hold phase is always 1 memory clock period duration."]
    #[inline(always)]
    pub fn addhld(&mut self) -> _ADDHLDW {
        _ADDHLDW { w: self }
    }
    #[doc = "Bits 8:15 - Data-phase duration These bits are written by software to define the duration of the data phase (refer to Figure81 to Figure93), used in asynchronous accesses: For each memory type and access mode data-phase duration, please refer to the respective figure (Figure81 to Figure93). Example: Mode1, write access, DATAST=1: Data-phase duration= DATAST+1 = 2 KCK_FMC clock cycles. Note: In synchronous accesses, this value is dont care."]
    #[inline(always)]
    pub fn datast(&mut self) -> _DATASTW {
        _DATASTW { w: self }
    }
    #[doc = "Bits 16:19 - Bus turnaround phase duration These bits are written by software to add a delay at the end of a write-to-read or read-to write transaction. The programmed bus turnaround delay is inserted between an asynchronous read (in muxed or mode D) or write transaction and any other asynchronous /synchronous read/write from/to a static bank. If a read operation is performed, the bank can be the same or a different one, whereas it must be different in case of write operation to the bank, except in muxed mode or mode D. In some cases, whatever the programmed BUSTRUN values, the bus turnaround delay is fixed as follows: The bus turnaround delay is not inserted between two consecutive asynchronous write transfers to the same static memory bank except in muxed mode and mode D. There is a bus turnaround delay of 1 FMC clock cycle between: Two consecutive asynchronous read transfers to the same static memory bank except for modes muxed and D. An asynchronous read to an asynchronous or synchronous write to any static bank or dynamic bank except in modes muxed and D mode. There is a bus turnaround delay of 2 FMC clock cycle between: Two consecutive synchronous write operations (in Burst or Single mode) to the same bank. A synchronous write (burst or single) access and an asynchronous write or read transfer to or from static memory bank (the bank can be the same or a different one in case of a read operation. Two consecutive synchronous read operations (in Burst or Single mode) followed by any synchronous/asynchronous read or write from/to another static memory bank. There is a bus turnaround delay of 3 FMC clock cycle between: Two consecutive synchronous write operations (in Burst or Single mode) to different static banks. A synchronous write access (in Burst or Single mode) and a synchronous read from the same or a different bank. The bus turnaround delay allows to match the minimum time between consecutive transactions (tEHEL from NEx high to NEx low) and the maximum time required by the memory to free the data bus after a read access (tEHQZ): (BUSTRUN + 1) KCK_FMC period &#8805; tEHELmin and (BUSTRUN + 2)KCK_FMC period &#8805; tEHQZmax if EXTMOD = 0 (BUSTRUN + 2)KCK_FMC period &#8805; max (tEHELmin, tEHQZmax) if EXTMOD =1. ..."]
    #[inline(always)]
    pub fn busturn(&mut self) -> _BUSTURNW {
        _BUSTURNW { w: self }
    }
    #[doc = "Bits 20:23 - Clock divide ratio (for FMC_CLK signal) These bits define the period of FMC_CLK clock output signal, expressed in number of KCK_FMC cycles: In asynchronous NOR Flash, SRAM or PSRAM accesses, this value is dont care. Note: Refer to Section20.6.5: Synchronous transactions for FMC_CLK divider ratio formula)"]
    #[inline(always)]
    pub fn clkdiv(&mut self) -> _CLKDIVW {
        _CLKDIVW { w: self }
    }
    #[doc = "Bits 24:27 - Data latency for synchronous memory For synchronous access with read write burst mode enabled these bits define the number of memory clock cycles"]
    #[inline(always)]
    pub fn datlat(&mut self) -> _DATLATW {
        _DATLATW { w: self }
    }
    #[doc = "Bits 28:29 - Access mode These bits specify the asynchronous access modes as shown in the timing diagrams. They are taken into account only when the EXTMOD bit in the FMC_BCRx register is 1."]
    #[inline(always)]
    pub fn accmod(&mut self) -> _ACCMODW {
        _ACCMODW { w: self }
    }
}