1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#[doc = "Reader of register CFGR"]
pub type R = crate::R<u32, super::CFGR>;
#[doc = "Writer for register CFGR"]
pub type W = crate::W<u32, super::CFGR>;
#[doc = "Register CFGR `reset()`'s with value 0x2022_bb7f"]
impl crate::ResetValue for super::CFGR {
    type Type = u32;
    #[inline(always)]
    fn reset_value() -> Self::Type {
        0x2022_bb7f
    }
}
#[doc = "Reader of field `RELOAD`"]
pub type RELOAD_R = crate::R<u16, u16>;
#[doc = "Write proxy for field `RELOAD`"]
pub struct RELOAD_W<'a> {
    w: &'a mut W,
}
impl<'a> RELOAD_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u16) -> &'a mut W {
        self.w.bits = (self.w.bits & !0xffff) | ((value as u32) & 0xffff);
        self.w
    }
}
#[doc = "Reader of field `FELIM`"]
pub type FELIM_R = crate::R<u8, u8>;
#[doc = "Write proxy for field `FELIM`"]
pub struct FELIM_W<'a> {
    w: &'a mut W,
}
impl<'a> FELIM_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0xff << 16)) | (((value as u32) & 0xff) << 16);
        self.w
    }
}
#[doc = "Reader of field `SYNCDIV`"]
pub type SYNCDIV_R = crate::R<u8, u8>;
#[doc = "Write proxy for field `SYNCDIV`"]
pub struct SYNCDIV_W<'a> {
    w: &'a mut W,
}
impl<'a> SYNCDIV_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x07 << 24)) | (((value as u32) & 0x07) << 24);
        self.w
    }
}
#[doc = "Reader of field `SYNCSRC`"]
pub type SYNCSRC_R = crate::R<u8, u8>;
#[doc = "Write proxy for field `SYNCSRC`"]
pub struct SYNCSRC_W<'a> {
    w: &'a mut W,
}
impl<'a> SYNCSRC_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x03 << 28)) | (((value as u32) & 0x03) << 28);
        self.w
    }
}
#[doc = "Reader of field `SYNCPOL`"]
pub type SYNCPOL_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `SYNCPOL`"]
pub struct SYNCPOL_W<'a> {
    w: &'a mut W,
}
impl<'a> SYNCPOL_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 31)) | (((value as u32) & 0x01) << 31);
        self.w
    }
}
impl R {
    #[doc = "Bits 0:15 - Counter reload value RELOAD is the value to be loaded in the frequency error counter with each SYNC event. Refer to Section7.3.3: Frequency error measurement for more details about counter behavior."]
    #[inline(always)]
    pub fn reload(&self) -> RELOAD_R {
        RELOAD_R::new((self.bits & 0xffff) as u16)
    }
    #[doc = "Bits 16:23 - Frequency error limit FELIM contains the value to be used to evaluate the captured frequency error value latched in the FECAP\\[15:0\\]
bits of the CRS_ISR register. Refer to Section7.3.4: Frequency error evaluation and automatic trimming for more details about FECAP evaluation."]
    #[inline(always)]
    pub fn felim(&self) -> FELIM_R {
        FELIM_R::new(((self.bits >> 16) & 0xff) as u8)
    }
    #[doc = "Bits 24:26 - SYNC divider These bits are set and cleared by software to control the division factor of the SYNC signal."]
    #[inline(always)]
    pub fn syncdiv(&self) -> SYNCDIV_R {
        SYNCDIV_R::new(((self.bits >> 24) & 0x07) as u8)
    }
    #[doc = "Bits 28:29 - SYNC signal source selection These bits are set and cleared by software to select the SYNC signal source. Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the periodic USB SOF will not be generated by the host. No SYNC signal will therefore be provided to the CRS to calibrate the HSI48 on the run. To guarantee the required clock precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs should be used as SYNC signal."]
    #[inline(always)]
    pub fn syncsrc(&self) -> SYNCSRC_R {
        SYNCSRC_R::new(((self.bits >> 28) & 0x03) as u8)
    }
    #[doc = "Bit 31 - SYNC polarity selection This bit is set and cleared by software to select the input polarity for the SYNC signal source."]
    #[inline(always)]
    pub fn syncpol(&self) -> SYNCPOL_R {
        SYNCPOL_R::new(((self.bits >> 31) & 0x01) != 0)
    }
}
impl W {
    #[doc = "Bits 0:15 - Counter reload value RELOAD is the value to be loaded in the frequency error counter with each SYNC event. Refer to Section7.3.3: Frequency error measurement for more details about counter behavior."]
    #[inline(always)]
    pub fn reload(&mut self) -> RELOAD_W {
        RELOAD_W { w: self }
    }
    #[doc = "Bits 16:23 - Frequency error limit FELIM contains the value to be used to evaluate the captured frequency error value latched in the FECAP\\[15:0\\]
bits of the CRS_ISR register. Refer to Section7.3.4: Frequency error evaluation and automatic trimming for more details about FECAP evaluation."]
    #[inline(always)]
    pub fn felim(&mut self) -> FELIM_W {
        FELIM_W { w: self }
    }
    #[doc = "Bits 24:26 - SYNC divider These bits are set and cleared by software to control the division factor of the SYNC signal."]
    #[inline(always)]
    pub fn syncdiv(&mut self) -> SYNCDIV_W {
        SYNCDIV_W { w: self }
    }
    #[doc = "Bits 28:29 - SYNC signal source selection These bits are set and cleared by software to select the SYNC signal source. Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the periodic USB SOF will not be generated by the host. No SYNC signal will therefore be provided to the CRS to calibrate the HSI48 on the run. To guarantee the required clock precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs should be used as SYNC signal."]
    #[inline(always)]
    pub fn syncsrc(&mut self) -> SYNCSRC_W {
        SYNCSRC_W { w: self }
    }
    #[doc = "Bit 31 - SYNC polarity selection This bit is set and cleared by software to select the input polarity for the SYNC signal source."]
    #[inline(always)]
    pub fn syncpol(&mut self) -> SYNCPOL_W {
        SYNCPOL_W { w: self }
    }
}