1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
use crate::stm32::{FLASH, PWR, RCC};
use crate::time::{Hertz, U32Ext};

mod clockout;
mod config;

pub use clockout::*;
pub use config::*;

/// HSI speed
pub const HSI_FREQ: u32 = 16_000_000;

/// Clock frequencies
#[derive(Clone, Copy)]
pub struct Clocks {
    /// System frequency
    pub sys_clk: Hertz,
    /// Core frequency
    pub core_clk: Hertz,
    /// AHB frequency
    pub ahb_clk: Hertz,
    /// APB frequency
    pub apb_clk: Hertz,
    /// APB timers frequency
    pub apb_tim_clk: Hertz,
    /// PLL frequency
    pub pll_clk: PLLClocks,
}

/// PLL Clock frequencies
#[derive(Clone, Copy)]
pub struct PLLClocks {
    /// R frequency
    pub r: Hertz,
    /// Q frequency
    pub q: Option<Hertz>,
    /// P frequency
    pub p: Option<Hertz>,
}

impl Default for Clocks {
    fn default() -> Clocks {
        Clocks {
            sys_clk: 16.mhz(),
            ahb_clk: 16.mhz(),
            core_clk: 2.mhz(),
            apb_clk: 16.mhz(),
            apb_tim_clk: 16.mhz(),
            pll_clk: PLLClocks {
                r: 64.mhz(),
                q: None,
                p: None,
            },
        }
    }
}

/// Constrained RCC peripheral
pub struct Rcc {
    /// Clock configuration
    pub clocks: Clocks,
    pub(crate) rb: RCC,
}

impl Rcc {
    /// Apply clock configuration
    pub fn freeze(self, rcc_cfg: Config) -> Self {
        let pll_clk = self.config_pll(rcc_cfg.pll_cfg);

        let (sys_clk, sw_bits) = match rcc_cfg.sys_mux {
            SysClockSrc::HSE(freq) => {
                self.enable_hse(false);
                (freq, 0b001)
            }
            SysClockSrc::HSE_BYPASS(freq) => {
                self.enable_hse(true);
                (freq, 0b001)
            }
            SysClockSrc::PLL => (pll_clk.r, 0b010),
            SysClockSrc::LSE(freq) => {
                self.enable_lse(false);
                (freq, 0b100)
            }
            SysClockSrc::LSE_BYPASS(freq) => {
                self.enable_lse(true);
                (freq, 0b100)
            }
            SysClockSrc::LSI => {
                self.enable_lsi();
                (32_768.hz(), 0b011)
            }
            SysClockSrc::HSI(prs) => {
                self.enable_hsi();
                let (freq, div_bits) = match prs {
                    Prescaler::Div2 => (HSI_FREQ / 2, 0b001),
                    Prescaler::Div4 => (HSI_FREQ / 4, 0b010),
                    Prescaler::Div8 => (HSI_FREQ / 8, 0b011),
                    Prescaler::Div16 => (HSI_FREQ / 16, 0b100),
                    Prescaler::Div32 => (HSI_FREQ / 32, 0b101),
                    Prescaler::Div64 => (HSI_FREQ / 64, 0b110),
                    Prescaler::Div128 => (HSI_FREQ / 128, 0b111),
                    _ => (HSI_FREQ, 0b000),
                };
                self.rb.cr.write(|w| unsafe { w.hsidiv().bits(div_bits) });
                (freq.hz(), 0b000)
            }
        };

        let sys_freq = sys_clk.0;
        let (ahb_freq, ahb_psc_bits) = match rcc_cfg.ahb_psc {
            Prescaler::Div2 => (sys_freq / 2, 0b1000),
            Prescaler::Div4 => (sys_freq / 4, 0b1001),
            Prescaler::Div8 => (sys_freq / 8, 0b1010),
            Prescaler::Div16 => (sys_freq / 16, 0b1011),
            Prescaler::Div64 => (sys_freq / 64, 0b1100),
            Prescaler::Div128 => (sys_freq / 128, 0b1101),
            Prescaler::Div256 => (sys_freq / 256, 0b1110),
            Prescaler::Div512 => (sys_freq / 512, 0b1111),
            _ => (sys_clk.0, 0b0000),
        };
        let (apb_freq, apb_tim_freq, apb_psc_bits) = match rcc_cfg.apb_psc {
            Prescaler::Div2 => (sys_freq / 2, sys_freq, 0b100),
            Prescaler::Div4 => (sys_freq / 4, sys_freq / 2, 0b101),
            Prescaler::Div8 => (sys_freq / 8, sys_freq / 4, 0b110),
            Prescaler::Div16 => (sys_freq / 16, sys_freq / 8, 0b111),
            _ => (sys_clk.0, sys_clk.0, 0b000),
        };

        unsafe {
            // Adjust flash wait states
            let flash = &(*FLASH::ptr());
            flash.acr.modify(|_, w| {
                w.latency().bits(if sys_clk.0 <= 24_000_000 {
                    0b000
                } else if sys_clk.0 <= 48_000_000 {
                    0b001
                } else {
                    0b010
                })
            })
        }

        self.rb.cfgr.modify(|_, w| unsafe {
            w.hpre()
                .bits(ahb_psc_bits)
                .ppre()
                .bits(apb_psc_bits)
                .sw()
                .bits(sw_bits)
        });

        while self.rb.cfgr.read().sws().bits() != sw_bits {}

        Rcc {
            rb: self.rb,
            clocks: Clocks {
                pll_clk,
                sys_clk,
                core_clk: (ahb_freq / 8).hz(),
                ahb_clk: ahb_freq.hz(),
                apb_clk: apb_freq.hz(),
                apb_tim_clk: apb_tim_freq.hz(),
            },
        }
    }

    fn config_pll(&self, pll_cfg: PllConfig) -> PLLClocks {
        assert!(pll_cfg.m > 0 && pll_cfg.m <= 8);
        assert!(pll_cfg.r > 1 && pll_cfg.r <= 8);

        // Disable PLL
        self.rb.cr.write(|w| w.pllon().clear_bit());
        while self.rb.cr.read().pllrdy().bit_is_set() {}

        let (freq, pll_sw_bits) = match pll_cfg.mux {
            PLLSrc::HSI => {
                self.enable_hsi();
                (HSI_FREQ, 0b10)
            }
            PLLSrc::HSE(freq) => {
                self.enable_hse(false);
                (freq.0, 0b11)
            }
            PLLSrc::HSE_BYPASS(freq) => {
                self.enable_hse(true);
                (freq.0, 0b11)
            }
        };

        let pll_freq = freq / (pll_cfg.m as u32) * (pll_cfg.n as u32);
        let r = (pll_freq / (pll_cfg.r as u32)).hz();
        let q = match pll_cfg.q {
            Some(div) if div > 1 && div <= 8 => {
                self.rb
                    .pllsyscfgr
                    .write(move |w| unsafe { w.pllq().bits(div - 1) });
                let req = freq / div as u32;
                Some(req.hz())
            }
            _ => None,
        };

        let p = match pll_cfg.p {
            Some(div) if div > 1 && div <= 8 => {
                self.rb
                    .pllsyscfgr
                    .write(move |w| unsafe { w.pllp().bits(div - 1) });
                let req = freq / div as u32;
                Some(req.hz())
            }
            _ => None,
        };

        self.rb.pllsyscfgr.write(move |w| unsafe {
            w.pllsrc()
                .bits(pll_sw_bits)
                .pllm()
                .bits(pll_cfg.m - 1)
                .plln()
                .bits(pll_cfg.n)
                .pllr()
                .bits(pll_cfg.r - 1)
                .pllren()
                .set_bit()
        });

        // Enable PLL
        self.rb.cr.write(|w| w.pllon().set_bit());
        while self.rb.cr.read().pllrdy().bit_is_clear() {}

        PLLClocks { r, q, p }
    }

    pub(crate) fn enable_hsi(&self) {
        self.rb.cr.write(|w| w.hsion().set_bit());
        while self.rb.cr.read().hsirdy().bit_is_clear() {}
    }

    pub(crate) fn enable_hse(&self, bypass: bool) {
        self.rb
            .cr
            .write(|w| w.hseon().set_bit().hsebyp().bit(bypass));
        while self.rb.cr.read().hserdy().bit_is_clear() {}
    }

    pub(crate) fn enable_lse(&self, bypass: bool) {
        self.rb
            .bdcr
            .write(|w| w.lseon().set_bit().lsebyp().bit(bypass));
        while self.rb.bdcr.read().lserdy().bit_is_clear() {}
    }

    pub(crate) fn enable_lsi(&self) {
        self.rb.csr.write(|w| w.lsion().set_bit());
        while self.rb.csr.read().lsirdy().bit_is_clear() {}
    }

    pub(crate) fn unlock_rtc(&self) {
        self.rb.apbenr1.modify(|_, w| w.pwren().set_bit());
        let pwr = unsafe { &(*PWR::ptr()) };
        pwr.cr1.modify(|_, w| w.dbp().set_bit());
    }
}

/// Extension trait that constrains the `RCC` peripheral
pub trait RccExt {
    /// Constrains the `RCC` peripheral so it plays nicely with the other abstractions
    fn constrain(self) -> Rcc;
    /// Constrains the `RCC` peripheral and apply clock configuration
    fn freeze(self, rcc_cfg: Config) -> Rcc;
}

impl RccExt for RCC {
    fn constrain(self) -> Rcc {
        Rcc {
            rb: self,
            clocks: Clocks::default(),
        }
    }

    fn freeze(self, rcc_cfg: Config) -> Rcc {
        self.constrain().freeze(rcc_cfg)
    }
}