Module stm32g0::stm32g0c1::hdmi_cec::cec_cfgr[][src]

Expand description

This register is used to configure the HDMI-CEC controller. It is mandatory to write CEC_CFGR only when CECEN=0.

Structs

Field BRDNOGEN reader - Avoid error-bit generation in broadcast The BRDNOGEN bit is set and cleared by software. error-bit on the CEC line. LBPE detection with LBPEGEN = 0 on a broadcast message generates an error-bit on the CEC line.

Field BRDNOGEN writer - Avoid error-bit generation in broadcast The BRDNOGEN bit is set and cleared by software. error-bit on the CEC line. LBPE detection with LBPEGEN = 0 on a broadcast message generates an error-bit on the CEC line.

Field BREGEN reader - Generate error-bit on bit rising error The BREGEN bit is set and cleared by software. Note: If BRDNOGEN = 0, an error-bit is generated upon BRE detection with BRESTP = 1 in broadcast even if BREGEN = 0.

Field BREGEN writer - Generate error-bit on bit rising error The BREGEN bit is set and cleared by software. Note: If BRDNOGEN = 0, an error-bit is generated upon BRE detection with BRESTP = 1 in broadcast even if BREGEN = 0.

Field BRESTP reader - Rx-stop on bit rising error The BRESTP bit is set and cleared by software.

Field BRESTP writer - Rx-stop on bit rising error The BRESTP bit is set and cleared by software.

This register is used to configure the HDMI-CEC controller. It is mandatory to write CEC_CFGR only when CECEN=0.

Field LBPEGEN reader - Generate error-bit on long bit period error The LBPEGEN bit is set and cleared by software. Note: If BRDNOGEN = 0, an error-bit is generated upon LBPE detection in broadcast even if LBPEGEN = 0.

Field LBPEGEN writer - Generate error-bit on long bit period error The LBPEGEN bit is set and cleared by software. Note: If BRDNOGEN = 0, an error-bit is generated upon LBPE detection in broadcast even if LBPEGEN = 0.

Field LSTN reader - Listen mode LSTN bit is set and cleared by software.

Field LSTN writer - Listen mode LSTN bit is set and cleared by software.

Field OAR reader - Own addresses configuration The OAR bits are set by software to select which destination logical addresses has to be considered in receive mode. Each bit, when set, enables the CEC logical address identified by the given bit position. At the end of HEADER reception, the received destination address is compared with the enabled addresses. In case of matching address, the incoming message is acknowledged and received. In case of non-matching address, the incoming message is received only in listen mode (LSTN = 1), but without acknowledge sent. Broadcast messages are always received. Example: OAR = 0b000 0000 0010 0001 means that CEC acknowledges addresses 0x0 and 0x5. Consequently, each message directed to one of these addresses is received.

Field OAR writer - Own addresses configuration The OAR bits are set by software to select which destination logical addresses has to be considered in receive mode. Each bit, when set, enables the CEC logical address identified by the given bit position. At the end of HEADER reception, the received destination address is compared with the enabled addresses. In case of matching address, the incoming message is acknowledged and received. In case of non-matching address, the incoming message is received only in listen mode (LSTN = 1), but without acknowledge sent. Broadcast messages are always received. Example: OAR = 0b000 0000 0010 0001 means that CEC acknowledges addresses 0x0 and 0x5. Consequently, each message directed to one of these addresses is received.

Register CEC_CFGR reader

Field RXTOL reader - Rx-tolerance The RXTOL bit is set and cleared by software. Start-bit, +/- 200 µs rise, +/- 200 µs fall Data-bit: +/- 200 µs rise. +/- 350 µs fall Start-bit: +/- 400 µs rise, +/- 400 µs fall Data-bit: +/-300 µs rise, +/- 500 µs fall

Field RXTOL writer - Rx-tolerance The RXTOL bit is set and cleared by software. Start-bit, +/- 200 µs rise, +/- 200 µs fall Data-bit: +/- 200 µs rise. +/- 350 µs fall Start-bit: +/- 400 µs rise, +/- 400 µs fall Data-bit: +/-300 µs rise, +/- 500 µs fall

Field SFTOP reader - SFT option bit The SFTOPT bit is set and cleared by software.

Field SFTOP writer - SFT option bit The SFTOPT bit is set and cleared by software.

Field SFT reader - Signal free time SFT bits are set by software. In the SFT = 0x0 configuration, the number of nominal data bit periods waited before transmission is ruled by hardware according to the transmission history. In all the other configurations the SFT number is determined by software. 0x0 2.5 data-bit periods if CEC is the last bus initiator with unsuccessful transmission (ARBLST = 1, TXERR = 1, TXUDR = 1 or TXACKE = 1) 4 data-bit periods if CEC is the new bus initiator 6 data-bit periods if CEC is the last bus initiator with successful transmission (TXEOM = 1)

Field SFT writer - Signal free time SFT bits are set by software. In the SFT = 0x0 configuration, the number of nominal data bit periods waited before transmission is ruled by hardware according to the transmission history. In all the other configurations the SFT number is determined by software. 0x0 2.5 data-bit periods if CEC is the last bus initiator with unsuccessful transmission (ARBLST = 1, TXERR = 1, TXUDR = 1 or TXACKE = 1) 4 data-bit periods if CEC is the new bus initiator 6 data-bit periods if CEC is the last bus initiator with successful transmission (TXEOM = 1)

Register CEC_CFGR writer

Enums

Avoid error-bit generation in broadcast The BRDNOGEN bit is set and cleared by software. error-bit on the CEC line. LBPE detection with LBPEGEN = 0 on a broadcast message generates an error-bit on the CEC line.

Generate error-bit on bit rising error The BREGEN bit is set and cleared by software. Note: If BRDNOGEN = 0, an error-bit is generated upon BRE detection with BRESTP = 1 in broadcast even if BREGEN = 0.

Rx-stop on bit rising error The BRESTP bit is set and cleared by software.

Generate error-bit on long bit period error The LBPEGEN bit is set and cleared by software. Note: If BRDNOGEN = 0, an error-bit is generated upon LBPE detection in broadcast even if LBPEGEN = 0.

Listen mode LSTN bit is set and cleared by software.

Rx-tolerance The RXTOL bit is set and cleared by software. Start-bit, +/- 200 µs rise, +/- 200 µs fall Data-bit: +/- 200 µs rise. +/- 350 µs fall Start-bit: +/- 400 µs rise, +/- 400 µs fall Data-bit: +/-300 µs rise, +/- 500 µs fall

SFT option bit The SFTOPT bit is set and cleared by software.

Signal free time SFT bits are set by software. In the SFT = 0x0 configuration, the number of nominal data bit periods waited before transmission is ruled by hardware according to the transmission history. In all the other configurations the SFT number is determined by software. 0x0 2.5 data-bit periods if CEC is the last bus initiator with unsuccessful transmission (ARBLST = 1, TXERR = 1, TXUDR = 1 or TXACKE = 1) 4 data-bit periods if CEC is the new bus initiator 6 data-bit periods if CEC is the last bus initiator with successful transmission (TXEOM = 1)