1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
#[doc = "Register `SMCR` reader"]
pub struct R(crate::R<SMCR_SPEC>);
impl core::ops::Deref for R {
    type Target = crate::R<SMCR_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl From<crate::R<SMCR_SPEC>> for R {
    #[inline(always)]
    fn from(reader: crate::R<SMCR_SPEC>) -> Self {
        R(reader)
    }
}
#[doc = "Register `SMCR` writer"]
pub struct W(crate::W<SMCR_SPEC>);
impl core::ops::Deref for W {
    type Target = crate::W<SMCR_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl core::ops::DerefMut for W {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}
impl From<crate::W<SMCR_SPEC>> for W {
    #[inline(always)]
    fn from(writer: crate::W<SMCR_SPEC>) -> Self {
        W(writer)
    }
}
#[doc = "Field `SMS1` reader - Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. reinitializes the counter, generates an update of the registers and starts the counter. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=00100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer."]
pub struct SMS1_R(crate::FieldReader<u8, u8>);
impl SMS1_R {
    pub(crate) fn new(bits: u8) -> Self {
        SMS1_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for SMS1_R {
    type Target = crate::FieldReader<u8, u8>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `SMS1` writer - Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. reinitializes the counter, generates an update of the registers and starts the counter. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=00100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer."]
pub struct SMS1_W<'a> {
    w: &'a mut W,
}
impl<'a> SMS1_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !0x07) | (value as u32 & 0x07);
        self.w
    }
}
#[doc = "OCREF clear selection This bit is used to select the OCREF clear source\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum OCCS_A {
    #[doc = "0: OCREF_CLR_INT is connected to COMP1 or COMP2 output depending on TIMx_OR1.OCREF_CLR"]
    B_0X0 = 0,
    #[doc = "1: OCREF_CLR_INT is connected to ETRF"]
    B_0X1 = 1,
}
impl From<OCCS_A> for bool {
    #[inline(always)]
    fn from(variant: OCCS_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `OCCS` reader - OCREF clear selection This bit is used to select the OCREF clear source"]
pub struct OCCS_R(crate::FieldReader<bool, OCCS_A>);
impl OCCS_R {
    pub(crate) fn new(bits: bool) -> Self {
        OCCS_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> OCCS_A {
        match self.bits {
            false => OCCS_A::B_0X0,
            true => OCCS_A::B_0X1,
        }
    }
    #[doc = "Checks if the value of the field is `B_0X0`"]
    #[inline(always)]
    pub fn is_b_0x0(&self) -> bool {
        **self == OCCS_A::B_0X0
    }
    #[doc = "Checks if the value of the field is `B_0X1`"]
    #[inline(always)]
    pub fn is_b_0x1(&self) -> bool {
        **self == OCCS_A::B_0X1
    }
}
impl core::ops::Deref for OCCS_R {
    type Target = crate::FieldReader<bool, OCCS_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `OCCS` writer - OCREF clear selection This bit is used to select the OCREF clear source"]
pub struct OCCS_W<'a> {
    w: &'a mut W,
}
impl<'a> OCCS_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: OCCS_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "OCREF_CLR_INT is connected to COMP1 or COMP2 output depending on TIMx_OR1.OCREF_CLR"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(OCCS_A::B_0X0)
    }
    #[doc = "OCREF_CLR_INT is connected to ETRF"]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(OCCS_A::B_0X1)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 3)) | ((value as u32 & 0x01) << 3);
        self.w
    }
}
#[doc = "Field `TS1` reader - Trigger selection This bit-field selects the trigger input to be used to synchronize the counter. Others: Reserved See for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition."]
pub struct TS1_R(crate::FieldReader<u8, u8>);
impl TS1_R {
    pub(crate) fn new(bits: u8) -> Self {
        TS1_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for TS1_R {
    type Target = crate::FieldReader<u8, u8>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `TS1` writer - Trigger selection This bit-field selects the trigger input to be used to synchronize the counter. Others: Reserved See for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition."]
pub struct TS1_W<'a> {
    w: &'a mut W,
}
impl<'a> TS1_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x07 << 4)) | ((value as u32 & 0x07) << 4);
        self.w
    }
}
#[doc = "Master/Slave mode\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum MSM_A {
    #[doc = "0: No action"]
    B_0X0 = 0,
    #[doc = "1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful if we want to synchronize several timers on a single external event."]
    B_0X1 = 1,
}
impl From<MSM_A> for bool {
    #[inline(always)]
    fn from(variant: MSM_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `MSM` reader - Master/Slave mode"]
pub struct MSM_R(crate::FieldReader<bool, MSM_A>);
impl MSM_R {
    pub(crate) fn new(bits: bool) -> Self {
        MSM_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> MSM_A {
        match self.bits {
            false => MSM_A::B_0X0,
            true => MSM_A::B_0X1,
        }
    }
    #[doc = "Checks if the value of the field is `B_0X0`"]
    #[inline(always)]
    pub fn is_b_0x0(&self) -> bool {
        **self == MSM_A::B_0X0
    }
    #[doc = "Checks if the value of the field is `B_0X1`"]
    #[inline(always)]
    pub fn is_b_0x1(&self) -> bool {
        **self == MSM_A::B_0X1
    }
}
impl core::ops::Deref for MSM_R {
    type Target = crate::FieldReader<bool, MSM_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `MSM` writer - Master/Slave mode"]
pub struct MSM_W<'a> {
    w: &'a mut W,
}
impl<'a> MSM_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: MSM_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "No action"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(MSM_A::B_0X0)
    }
    #[doc = "The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful if we want to synchronize several timers on a single external event."]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(MSM_A::B_0X1)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 7)) | ((value as u32 & 0x01) << 7);
        self.w
    }
}
#[doc = "External trigger filter This bit-field then defines the frequency used to sample ETRP signal and the length of the digital filter applied to ETRP. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output:\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
#[repr(u8)]
pub enum ETF_A {
    #[doc = "0: No filter, sampling is done at fDTS"]
    B_0X0 = 0,
    #[doc = "1: fSAMPLING=fCK_INT, N=2"]
    B_0X1 = 1,
    #[doc = "2: fSAMPLING=fCK_INT, N=4"]
    B_0X2 = 2,
    #[doc = "3: fSAMPLING=fCK_INT, N=8"]
    B_0X3 = 3,
    #[doc = "4: fSAMPLING=fDTS/2, N=6"]
    B_0X4 = 4,
    #[doc = "5: fSAMPLING=fDTS/2, N=8"]
    B_0X5 = 5,
    #[doc = "6: fSAMPLING=fDTS/4, N=6"]
    B_0X6 = 6,
    #[doc = "7: fSAMPLING=fDTS/4, N=8"]
    B_0X7 = 7,
    #[doc = "8: fSAMPLING=fDTS/8, N=6"]
    B_0X8 = 8,
    #[doc = "9: fSAMPLING=fDTS/8, N=8"]
    B_0X9 = 9,
    #[doc = "10: fSAMPLING=fDTS/16, N=5"]
    B_0XA = 10,
    #[doc = "11: fSAMPLING=fDTS/16, N=6"]
    B_0XB = 11,
    #[doc = "12: fSAMPLING=fDTS/16, N=8"]
    B_0XC = 12,
    #[doc = "13: fSAMPLING=fDTS/32, N=5"]
    B_0XD = 13,
    #[doc = "14: fSAMPLING=fDTS/32, N=6"]
    B_0XE = 14,
    #[doc = "15: fSAMPLING=fDTS/32, N=8"]
    B_0XF = 15,
}
impl From<ETF_A> for u8 {
    #[inline(always)]
    fn from(variant: ETF_A) -> Self {
        variant as _
    }
}
#[doc = "Field `ETF` reader - External trigger filter This bit-field then defines the frequency used to sample ETRP signal and the length of the digital filter applied to ETRP. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output:"]
pub struct ETF_R(crate::FieldReader<u8, ETF_A>);
impl ETF_R {
    pub(crate) fn new(bits: u8) -> Self {
        ETF_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> ETF_A {
        match self.bits {
            0 => ETF_A::B_0X0,
            1 => ETF_A::B_0X1,
            2 => ETF_A::B_0X2,
            3 => ETF_A::B_0X3,
            4 => ETF_A::B_0X4,
            5 => ETF_A::B_0X5,
            6 => ETF_A::B_0X6,
            7 => ETF_A::B_0X7,
            8 => ETF_A::B_0X8,
            9 => ETF_A::B_0X9,
            10 => ETF_A::B_0XA,
            11 => ETF_A::B_0XB,
            12 => ETF_A::B_0XC,
            13 => ETF_A::B_0XD,
            14 => ETF_A::B_0XE,
            15 => ETF_A::B_0XF,
            _ => unreachable!(),
        }
    }
    #[doc = "Checks if the value of the field is `B_0X0`"]
    #[inline(always)]
    pub fn is_b_0x0(&self) -> bool {
        **self == ETF_A::B_0X0
    }
    #[doc = "Checks if the value of the field is `B_0X1`"]
    #[inline(always)]
    pub fn is_b_0x1(&self) -> bool {
        **self == ETF_A::B_0X1
    }
    #[doc = "Checks if the value of the field is `B_0X2`"]
    #[inline(always)]
    pub fn is_b_0x2(&self) -> bool {
        **self == ETF_A::B_0X2
    }
    #[doc = "Checks if the value of the field is `B_0X3`"]
    #[inline(always)]
    pub fn is_b_0x3(&self) -> bool {
        **self == ETF_A::B_0X3
    }
    #[doc = "Checks if the value of the field is `B_0X4`"]
    #[inline(always)]
    pub fn is_b_0x4(&self) -> bool {
        **self == ETF_A::B_0X4
    }
    #[doc = "Checks if the value of the field is `B_0X5`"]
    #[inline(always)]
    pub fn is_b_0x5(&self) -> bool {
        **self == ETF_A::B_0X5
    }
    #[doc = "Checks if the value of the field is `B_0X6`"]
    #[inline(always)]
    pub fn is_b_0x6(&self) -> bool {
        **self == ETF_A::B_0X6
    }
    #[doc = "Checks if the value of the field is `B_0X7`"]
    #[inline(always)]
    pub fn is_b_0x7(&self) -> bool {
        **self == ETF_A::B_0X7
    }
    #[doc = "Checks if the value of the field is `B_0X8`"]
    #[inline(always)]
    pub fn is_b_0x8(&self) -> bool {
        **self == ETF_A::B_0X8
    }
    #[doc = "Checks if the value of the field is `B_0X9`"]
    #[inline(always)]
    pub fn is_b_0x9(&self) -> bool {
        **self == ETF_A::B_0X9
    }
    #[doc = "Checks if the value of the field is `B_0XA`"]
    #[inline(always)]
    pub fn is_b_0x_a(&self) -> bool {
        **self == ETF_A::B_0XA
    }
    #[doc = "Checks if the value of the field is `B_0XB`"]
    #[inline(always)]
    pub fn is_b_0x_b(&self) -> bool {
        **self == ETF_A::B_0XB
    }
    #[doc = "Checks if the value of the field is `B_0XC`"]
    #[inline(always)]
    pub fn is_b_0x_c(&self) -> bool {
        **self == ETF_A::B_0XC
    }
    #[doc = "Checks if the value of the field is `B_0XD`"]
    #[inline(always)]
    pub fn is_b_0x_d(&self) -> bool {
        **self == ETF_A::B_0XD
    }
    #[doc = "Checks if the value of the field is `B_0XE`"]
    #[inline(always)]
    pub fn is_b_0x_e(&self) -> bool {
        **self == ETF_A::B_0XE
    }
    #[doc = "Checks if the value of the field is `B_0XF`"]
    #[inline(always)]
    pub fn is_b_0x_f(&self) -> bool {
        **self == ETF_A::B_0XF
    }
}
impl core::ops::Deref for ETF_R {
    type Target = crate::FieldReader<u8, ETF_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `ETF` writer - External trigger filter This bit-field then defines the frequency used to sample ETRP signal and the length of the digital filter applied to ETRP. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output:"]
pub struct ETF_W<'a> {
    w: &'a mut W,
}
impl<'a> ETF_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: ETF_A) -> &'a mut W {
        self.bits(variant.into())
    }
    #[doc = "No filter, sampling is done at fDTS"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(ETF_A::B_0X0)
    }
    #[doc = "fSAMPLING=fCK_INT, N=2"]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(ETF_A::B_0X1)
    }
    #[doc = "fSAMPLING=fCK_INT, N=4"]
    #[inline(always)]
    pub fn b_0x2(self) -> &'a mut W {
        self.variant(ETF_A::B_0X2)
    }
    #[doc = "fSAMPLING=fCK_INT, N=8"]
    #[inline(always)]
    pub fn b_0x3(self) -> &'a mut W {
        self.variant(ETF_A::B_0X3)
    }
    #[doc = "fSAMPLING=fDTS/2, N=6"]
    #[inline(always)]
    pub fn b_0x4(self) -> &'a mut W {
        self.variant(ETF_A::B_0X4)
    }
    #[doc = "fSAMPLING=fDTS/2, N=8"]
    #[inline(always)]
    pub fn b_0x5(self) -> &'a mut W {
        self.variant(ETF_A::B_0X5)
    }
    #[doc = "fSAMPLING=fDTS/4, N=6"]
    #[inline(always)]
    pub fn b_0x6(self) -> &'a mut W {
        self.variant(ETF_A::B_0X6)
    }
    #[doc = "fSAMPLING=fDTS/4, N=8"]
    #[inline(always)]
    pub fn b_0x7(self) -> &'a mut W {
        self.variant(ETF_A::B_0X7)
    }
    #[doc = "fSAMPLING=fDTS/8, N=6"]
    #[inline(always)]
    pub fn b_0x8(self) -> &'a mut W {
        self.variant(ETF_A::B_0X8)
    }
    #[doc = "fSAMPLING=fDTS/8, N=8"]
    #[inline(always)]
    pub fn b_0x9(self) -> &'a mut W {
        self.variant(ETF_A::B_0X9)
    }
    #[doc = "fSAMPLING=fDTS/16, N=5"]
    #[inline(always)]
    pub fn b_0x_a(self) -> &'a mut W {
        self.variant(ETF_A::B_0XA)
    }
    #[doc = "fSAMPLING=fDTS/16, N=6"]
    #[inline(always)]
    pub fn b_0x_b(self) -> &'a mut W {
        self.variant(ETF_A::B_0XB)
    }
    #[doc = "fSAMPLING=fDTS/16, N=8"]
    #[inline(always)]
    pub fn b_0x_c(self) -> &'a mut W {
        self.variant(ETF_A::B_0XC)
    }
    #[doc = "fSAMPLING=fDTS/32, N=5"]
    #[inline(always)]
    pub fn b_0x_d(self) -> &'a mut W {
        self.variant(ETF_A::B_0XD)
    }
    #[doc = "fSAMPLING=fDTS/32, N=6"]
    #[inline(always)]
    pub fn b_0x_e(self) -> &'a mut W {
        self.variant(ETF_A::B_0XE)
    }
    #[doc = "fSAMPLING=fDTS/32, N=8"]
    #[inline(always)]
    pub fn b_0x_f(self) -> &'a mut W {
        self.variant(ETF_A::B_0XF)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x0f << 8)) | ((value as u32 & 0x0f) << 8);
        self.w
    }
}
#[doc = "External trigger prescaler External trigger signal ETRP frequency must be at most 1/4 of CK_INT frequency. A prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
#[repr(u8)]
pub enum ETPS_A {
    #[doc = "0: Prescaler OFF"]
    B_0X0 = 0,
    #[doc = "1: ETRP frequency divided by 2"]
    B_0X1 = 1,
    #[doc = "2: ETRP frequency divided by 4"]
    B_0X2 = 2,
    #[doc = "3: ETRP frequency divided by 8"]
    B_0X3 = 3,
}
impl From<ETPS_A> for u8 {
    #[inline(always)]
    fn from(variant: ETPS_A) -> Self {
        variant as _
    }
}
#[doc = "Field `ETPS` reader - External trigger prescaler External trigger signal ETRP frequency must be at most 1/4 of CK_INT frequency. A prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks."]
pub struct ETPS_R(crate::FieldReader<u8, ETPS_A>);
impl ETPS_R {
    pub(crate) fn new(bits: u8) -> Self {
        ETPS_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> ETPS_A {
        match self.bits {
            0 => ETPS_A::B_0X0,
            1 => ETPS_A::B_0X1,
            2 => ETPS_A::B_0X2,
            3 => ETPS_A::B_0X3,
            _ => unreachable!(),
        }
    }
    #[doc = "Checks if the value of the field is `B_0X0`"]
    #[inline(always)]
    pub fn is_b_0x0(&self) -> bool {
        **self == ETPS_A::B_0X0
    }
    #[doc = "Checks if the value of the field is `B_0X1`"]
    #[inline(always)]
    pub fn is_b_0x1(&self) -> bool {
        **self == ETPS_A::B_0X1
    }
    #[doc = "Checks if the value of the field is `B_0X2`"]
    #[inline(always)]
    pub fn is_b_0x2(&self) -> bool {
        **self == ETPS_A::B_0X2
    }
    #[doc = "Checks if the value of the field is `B_0X3`"]
    #[inline(always)]
    pub fn is_b_0x3(&self) -> bool {
        **self == ETPS_A::B_0X3
    }
}
impl core::ops::Deref for ETPS_R {
    type Target = crate::FieldReader<u8, ETPS_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `ETPS` writer - External trigger prescaler External trigger signal ETRP frequency must be at most 1/4 of CK_INT frequency. A prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks."]
pub struct ETPS_W<'a> {
    w: &'a mut W,
}
impl<'a> ETPS_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: ETPS_A) -> &'a mut W {
        self.bits(variant.into())
    }
    #[doc = "Prescaler OFF"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(ETPS_A::B_0X0)
    }
    #[doc = "ETRP frequency divided by 2"]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(ETPS_A::B_0X1)
    }
    #[doc = "ETRP frequency divided by 4"]
    #[inline(always)]
    pub fn b_0x2(self) -> &'a mut W {
        self.variant(ETPS_A::B_0X2)
    }
    #[doc = "ETRP frequency divided by 8"]
    #[inline(always)]
    pub fn b_0x3(self) -> &'a mut W {
        self.variant(ETPS_A::B_0X3)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x03 << 12)) | ((value as u32 & 0x03) << 12);
        self.w
    }
}
#[doc = "External clock enable This bit enables External clock mode 2. Note: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI connected to ETRF (SMS=111 and TS=00111). It is possible to simultaneously use external clock mode 2 with the following slave modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to ETRF in this case (TS bits must not be 00111). If external clock mode 1 and external clock mode 2 are enabled at the same time, the external clock input is ETRF.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ECE_A {
    #[doc = "0: External clock mode 2 disabled"]
    B_0X0 = 0,
    #[doc = "1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal."]
    B_0X1 = 1,
}
impl From<ECE_A> for bool {
    #[inline(always)]
    fn from(variant: ECE_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `ECE` reader - External clock enable This bit enables External clock mode 2. Note: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI connected to ETRF (SMS=111 and TS=00111). It is possible to simultaneously use external clock mode 2 with the following slave modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to ETRF in this case (TS bits must not be 00111). If external clock mode 1 and external clock mode 2 are enabled at the same time, the external clock input is ETRF."]
pub struct ECE_R(crate::FieldReader<bool, ECE_A>);
impl ECE_R {
    pub(crate) fn new(bits: bool) -> Self {
        ECE_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> ECE_A {
        match self.bits {
            false => ECE_A::B_0X0,
            true => ECE_A::B_0X1,
        }
    }
    #[doc = "Checks if the value of the field is `B_0X0`"]
    #[inline(always)]
    pub fn is_b_0x0(&self) -> bool {
        **self == ECE_A::B_0X0
    }
    #[doc = "Checks if the value of the field is `B_0X1`"]
    #[inline(always)]
    pub fn is_b_0x1(&self) -> bool {
        **self == ECE_A::B_0X1
    }
}
impl core::ops::Deref for ECE_R {
    type Target = crate::FieldReader<bool, ECE_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `ECE` writer - External clock enable This bit enables External clock mode 2. Note: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI connected to ETRF (SMS=111 and TS=00111). It is possible to simultaneously use external clock mode 2 with the following slave modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to ETRF in this case (TS bits must not be 00111). If external clock mode 1 and external clock mode 2 are enabled at the same time, the external clock input is ETRF."]
pub struct ECE_W<'a> {
    w: &'a mut W,
}
impl<'a> ECE_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: ECE_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "External clock mode 2 disabled"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(ECE_A::B_0X0)
    }
    #[doc = "External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal."]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(ECE_A::B_0X1)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 14)) | ((value as u32 & 0x01) << 14);
        self.w
    }
}
#[doc = "External trigger polarity This bit selects whether ETR or ETR is used for trigger operations\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ETP_A {
    #[doc = "0: ETR is non-inverted, active at high level or rising edge"]
    B_0X0 = 0,
    #[doc = "1: ETR is inverted, active at low level or falling edge"]
    B_0X1 = 1,
}
impl From<ETP_A> for bool {
    #[inline(always)]
    fn from(variant: ETP_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `ETP` reader - External trigger polarity This bit selects whether ETR or ETR is used for trigger operations"]
pub struct ETP_R(crate::FieldReader<bool, ETP_A>);
impl ETP_R {
    pub(crate) fn new(bits: bool) -> Self {
        ETP_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> ETP_A {
        match self.bits {
            false => ETP_A::B_0X0,
            true => ETP_A::B_0X1,
        }
    }
    #[doc = "Checks if the value of the field is `B_0X0`"]
    #[inline(always)]
    pub fn is_b_0x0(&self) -> bool {
        **self == ETP_A::B_0X0
    }
    #[doc = "Checks if the value of the field is `B_0X1`"]
    #[inline(always)]
    pub fn is_b_0x1(&self) -> bool {
        **self == ETP_A::B_0X1
    }
}
impl core::ops::Deref for ETP_R {
    type Target = crate::FieldReader<bool, ETP_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `ETP` writer - External trigger polarity This bit selects whether ETR or ETR is used for trigger operations"]
pub struct ETP_W<'a> {
    w: &'a mut W,
}
impl<'a> ETP_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: ETP_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "ETR is non-inverted, active at high level or rising edge"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(ETP_A::B_0X0)
    }
    #[doc = "ETR is inverted, active at low level or falling edge"]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(ETP_A::B_0X1)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 15)) | ((value as u32 & 0x01) << 15);
        self.w
    }
}
#[doc = "Field `SMS2` reader - Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. reinitializes the counter, generates an update of the registers and starts the counter. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=00100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer."]
pub struct SMS2_R(crate::FieldReader<bool, bool>);
impl SMS2_R {
    pub(crate) fn new(bits: bool) -> Self {
        SMS2_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for SMS2_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `SMS2` writer - Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. reinitializes the counter, generates an update of the registers and starts the counter. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=00100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer."]
pub struct SMS2_W<'a> {
    w: &'a mut W,
}
impl<'a> SMS2_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 16)) | ((value as u32 & 0x01) << 16);
        self.w
    }
}
#[doc = "Field `TS2` reader - Trigger selection This bit-field selects the trigger input to be used to synchronize the counter. Others: Reserved See for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition."]
pub struct TS2_R(crate::FieldReader<u8, u8>);
impl TS2_R {
    pub(crate) fn new(bits: u8) -> Self {
        TS2_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for TS2_R {
    type Target = crate::FieldReader<u8, u8>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `TS2` writer - Trigger selection This bit-field selects the trigger input to be used to synchronize the counter. Others: Reserved See for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition."]
pub struct TS2_W<'a> {
    w: &'a mut W,
}
impl<'a> TS2_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x03 << 20)) | ((value as u32 & 0x03) << 20);
        self.w
    }
}
impl R {
    #[doc = "Bits 0:2 - Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. reinitializes the counter, generates an update of the registers and starts the counter. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=00100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer."]
    #[inline(always)]
    pub fn sms1(&self) -> SMS1_R {
        SMS1_R::new((self.bits & 0x07) as u8)
    }
    #[doc = "Bit 3 - OCREF clear selection This bit is used to select the OCREF clear source"]
    #[inline(always)]
    pub fn occs(&self) -> OCCS_R {
        OCCS_R::new(((self.bits >> 3) & 0x01) != 0)
    }
    #[doc = "Bits 4:6 - Trigger selection This bit-field selects the trigger input to be used to synchronize the counter. Others: Reserved See for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition."]
    #[inline(always)]
    pub fn ts1(&self) -> TS1_R {
        TS1_R::new(((self.bits >> 4) & 0x07) as u8)
    }
    #[doc = "Bit 7 - Master/Slave mode"]
    #[inline(always)]
    pub fn msm(&self) -> MSM_R {
        MSM_R::new(((self.bits >> 7) & 0x01) != 0)
    }
    #[doc = "Bits 8:11 - External trigger filter This bit-field then defines the frequency used to sample ETRP signal and the length of the digital filter applied to ETRP. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output:"]
    #[inline(always)]
    pub fn etf(&self) -> ETF_R {
        ETF_R::new(((self.bits >> 8) & 0x0f) as u8)
    }
    #[doc = "Bits 12:13 - External trigger prescaler External trigger signal ETRP frequency must be at most 1/4 of CK_INT frequency. A prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks."]
    #[inline(always)]
    pub fn etps(&self) -> ETPS_R {
        ETPS_R::new(((self.bits >> 12) & 0x03) as u8)
    }
    #[doc = "Bit 14 - External clock enable This bit enables External clock mode 2. Note: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI connected to ETRF (SMS=111 and TS=00111). It is possible to simultaneously use external clock mode 2 with the following slave modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to ETRF in this case (TS bits must not be 00111). If external clock mode 1 and external clock mode 2 are enabled at the same time, the external clock input is ETRF."]
    #[inline(always)]
    pub fn ece(&self) -> ECE_R {
        ECE_R::new(((self.bits >> 14) & 0x01) != 0)
    }
    #[doc = "Bit 15 - External trigger polarity This bit selects whether ETR or ETR is used for trigger operations"]
    #[inline(always)]
    pub fn etp(&self) -> ETP_R {
        ETP_R::new(((self.bits >> 15) & 0x01) != 0)
    }
    #[doc = "Bit 16 - Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. reinitializes the counter, generates an update of the registers and starts the counter. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=00100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer."]
    #[inline(always)]
    pub fn sms2(&self) -> SMS2_R {
        SMS2_R::new(((self.bits >> 16) & 0x01) != 0)
    }
    #[doc = "Bits 20:21 - Trigger selection This bit-field selects the trigger input to be used to synchronize the counter. Others: Reserved See for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition."]
    #[inline(always)]
    pub fn ts2(&self) -> TS2_R {
        TS2_R::new(((self.bits >> 20) & 0x03) as u8)
    }
}
impl W {
    #[doc = "Bits 0:2 - Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. reinitializes the counter, generates an update of the registers and starts the counter. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=00100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer."]
    #[inline(always)]
    pub fn sms1(&mut self) -> SMS1_W {
        SMS1_W { w: self }
    }
    #[doc = "Bit 3 - OCREF clear selection This bit is used to select the OCREF clear source"]
    #[inline(always)]
    pub fn occs(&mut self) -> OCCS_W {
        OCCS_W { w: self }
    }
    #[doc = "Bits 4:6 - Trigger selection This bit-field selects the trigger input to be used to synchronize the counter. Others: Reserved See for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition."]
    #[inline(always)]
    pub fn ts1(&mut self) -> TS1_W {
        TS1_W { w: self }
    }
    #[doc = "Bit 7 - Master/Slave mode"]
    #[inline(always)]
    pub fn msm(&mut self) -> MSM_W {
        MSM_W { w: self }
    }
    #[doc = "Bits 8:11 - External trigger filter This bit-field then defines the frequency used to sample ETRP signal and the length of the digital filter applied to ETRP. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output:"]
    #[inline(always)]
    pub fn etf(&mut self) -> ETF_W {
        ETF_W { w: self }
    }
    #[doc = "Bits 12:13 - External trigger prescaler External trigger signal ETRP frequency must be at most 1/4 of CK_INT frequency. A prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks."]
    #[inline(always)]
    pub fn etps(&mut self) -> ETPS_W {
        ETPS_W { w: self }
    }
    #[doc = "Bit 14 - External clock enable This bit enables External clock mode 2. Note: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI connected to ETRF (SMS=111 and TS=00111). It is possible to simultaneously use external clock mode 2 with the following slave modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to ETRF in this case (TS bits must not be 00111). If external clock mode 1 and external clock mode 2 are enabled at the same time, the external clock input is ETRF."]
    #[inline(always)]
    pub fn ece(&mut self) -> ECE_W {
        ECE_W { w: self }
    }
    #[doc = "Bit 15 - External trigger polarity This bit selects whether ETR or ETR is used for trigger operations"]
    #[inline(always)]
    pub fn etp(&mut self) -> ETP_W {
        ETP_W { w: self }
    }
    #[doc = "Bit 16 - Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. reinitializes the counter, generates an update of the registers and starts the counter. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=00100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer."]
    #[inline(always)]
    pub fn sms2(&mut self) -> SMS2_W {
        SMS2_W { w: self }
    }
    #[doc = "Bits 20:21 - Trigger selection This bit-field selects the trigger input to be used to synchronize the counter. Others: Reserved See for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition."]
    #[inline(always)]
    pub fn ts2(&mut self) -> TS2_W {
        TS2_W { w: self }
    }
    #[doc = "Writes raw bits to the register."]
    #[inline(always)]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.0.bits(bits);
        self
    }
}
#[doc = "slave mode control register\n\nThis register you can [`read`](crate::generic::Reg::read), [`write_with_zero`](crate::generic::Reg::write_with_zero), [`reset`](crate::generic::Reg::reset), [`write`](crate::generic::Reg::write), [`modify`](crate::generic::Reg::modify). See [API](https://docs.rs/svd2rust/#read--modify--write-api).\n\nFor information about available fields see [smcr](index.html) module"]
pub struct SMCR_SPEC;
impl crate::RegisterSpec for SMCR_SPEC {
    type Ux = u32;
}
#[doc = "`read()` method returns [smcr::R](R) reader structure"]
impl crate::Readable for SMCR_SPEC {
    type Reader = R;
}
#[doc = "`write(|w| ..)` method takes [smcr::W](W) writer structure"]
impl crate::Writable for SMCR_SPEC {
    type Writer = W;
}
#[doc = "`reset()` method sets SMCR to value 0"]
impl crate::Resettable for SMCR_SPEC {
    #[inline(always)]
    fn reset_value() -> Self::Ux {
        0
    }
}