1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
#[doc = "Register `BDTR` reader"]
pub struct R(crate::R<BDTR_SPEC>);
impl core::ops::Deref for R {
    type Target = crate::R<BDTR_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl From<crate::R<BDTR_SPEC>> for R {
    #[inline(always)]
    fn from(reader: crate::R<BDTR_SPEC>) -> Self {
        R(reader)
    }
}
#[doc = "Register `BDTR` writer"]
pub struct W(crate::W<BDTR_SPEC>);
impl core::ops::Deref for W {
    type Target = crate::W<BDTR_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl core::ops::DerefMut for W {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}
impl From<crate::W<BDTR_SPEC>> for W {
    #[inline(always)]
    fn from(writer: crate::W<BDTR_SPEC>) -> Self {
        W(writer)
    }
}
#[doc = "Field `DTG` reader - Dead-time generator setup This bit-field defines the duration of the dead-time inserted between the complementary outputs. DT correspond to this duration. DTG\\[7:5\\]=0xx => DT=DTG\\[7:0\\]x tdtg with tdtg=tDTS DTG\\[7:5\\]=10x => DT=(64+DTG\\[5:0\\])xtdtg with Tdtg=2xtDTS DTG\\[7:5\\]=110 => DT=(32+DTG\\[4:0\\])xtdtg with Tdtg=8xtDTS DTG\\[7:5\\]=111 => DT=(32+DTG\\[4:0\\])xtdtg with Tdtg=16xtDTS Example if TDTS=125ns (8MHz), dead-time possible values are: 0 to 15875 ns by 125 ns steps, 16 µs to 31750 ns by 250 ns steps, 32 µs to 63 µs by 1 µs steps, 64 µs to 126 µs by 2 µs steps Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register)."]
pub struct DTG_R(crate::FieldReader<u8, u8>);
impl DTG_R {
    pub(crate) fn new(bits: u8) -> Self {
        DTG_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for DTG_R {
    type Target = crate::FieldReader<u8, u8>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `DTG` writer - Dead-time generator setup This bit-field defines the duration of the dead-time inserted between the complementary outputs. DT correspond to this duration. DTG\\[7:5\\]=0xx => DT=DTG\\[7:0\\]x tdtg with tdtg=tDTS DTG\\[7:5\\]=10x => DT=(64+DTG\\[5:0\\])xtdtg with Tdtg=2xtDTS DTG\\[7:5\\]=110 => DT=(32+DTG\\[4:0\\])xtdtg with Tdtg=8xtDTS DTG\\[7:5\\]=111 => DT=(32+DTG\\[4:0\\])xtdtg with Tdtg=16xtDTS Example if TDTS=125ns (8MHz), dead-time possible values are: 0 to 15875 ns by 125 ns steps, 16 µs to 31750 ns by 250 ns steps, 32 µs to 63 µs by 1 µs steps, 64 µs to 126 µs by 2 µs steps Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register)."]
pub struct DTG_W<'a> {
    w: &'a mut W,
}
impl<'a> DTG_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !0xff) | (value as u32 & 0xff);
        self.w
    }
}
#[doc = "Lock configuration These bits offer a write protection against software errors. Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register has been written, their content is frozen until the next reset.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
#[repr(u8)]
pub enum LOCK_A {
    #[doc = "0: LOCK OFF - No bit is write protected"]
    B_0X0 = 0,
    #[doc = "1: LOCK Level 1 = DTG bits in TIMx_BDTR register, OISx and OISxN bits in TIMx_CR2 register and BKE/BKP/AOE bits in TIMx_BDTR register can no longer be written"]
    B_0X1 = 1,
    #[doc = "2: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCxP/CCxNP bits in TIMx_CCER register, as long as the related channel is configured in output through the CCxS bits) as well as OSSR and OSSI bits can no longer be written."]
    B_0X2 = 2,
    #[doc = "3: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in TIMx_CCMRx registers, as long as the related channel is configured in output through the CCxS bits) can no longer be written."]
    B_0X3 = 3,
}
impl From<LOCK_A> for u8 {
    #[inline(always)]
    fn from(variant: LOCK_A) -> Self {
        variant as _
    }
}
#[doc = "Field `LOCK` reader - Lock configuration These bits offer a write protection against software errors. Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register has been written, their content is frozen until the next reset."]
pub struct LOCK_R(crate::FieldReader<u8, LOCK_A>);
impl LOCK_R {
    pub(crate) fn new(bits: u8) -> Self {
        LOCK_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> LOCK_A {
        match self.bits {
            0 => LOCK_A::B_0X0,
            1 => LOCK_A::B_0X1,
            2 => LOCK_A::B_0X2,
            3 => LOCK_A::B_0X3,
            _ => unreachable!(),
        }
    }
    #[doc = "Checks if the value of the field is `B_0X0`"]
    #[inline(always)]
    pub fn is_b_0x0(&self) -> bool {
        **self == LOCK_A::B_0X0
    }
    #[doc = "Checks if the value of the field is `B_0X1`"]
    #[inline(always)]
    pub fn is_b_0x1(&self) -> bool {
        **self == LOCK_A::B_0X1
    }
    #[doc = "Checks if the value of the field is `B_0X2`"]
    #[inline(always)]
    pub fn is_b_0x2(&self) -> bool {
        **self == LOCK_A::B_0X2
    }
    #[doc = "Checks if the value of the field is `B_0X3`"]
    #[inline(always)]
    pub fn is_b_0x3(&self) -> bool {
        **self == LOCK_A::B_0X3
    }
}
impl core::ops::Deref for LOCK_R {
    type Target = crate::FieldReader<u8, LOCK_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `LOCK` writer - Lock configuration These bits offer a write protection against software errors. Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register has been written, their content is frozen until the next reset."]
pub struct LOCK_W<'a> {
    w: &'a mut W,
}
impl<'a> LOCK_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: LOCK_A) -> &'a mut W {
        self.bits(variant.into())
    }
    #[doc = "LOCK OFF - No bit is write protected"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(LOCK_A::B_0X0)
    }
    #[doc = "LOCK Level 1 = DTG bits in TIMx_BDTR register, OISx and OISxN bits in TIMx_CR2 register and BKE/BKP/AOE bits in TIMx_BDTR register can no longer be written"]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(LOCK_A::B_0X1)
    }
    #[doc = "LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCxP/CCxNP bits in TIMx_CCER register, as long as the related channel is configured in output through the CCxS bits) as well as OSSR and OSSI bits can no longer be written."]
    #[inline(always)]
    pub fn b_0x2(self) -> &'a mut W {
        self.variant(LOCK_A::B_0X2)
    }
    #[doc = "LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in TIMx_CCMRx registers, as long as the related channel is configured in output through the CCxS bits) can no longer be written."]
    #[inline(always)]
    pub fn b_0x3(self) -> &'a mut W {
        self.variant(LOCK_A::B_0X3)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x03 << 8)) | ((value as u32 & 0x03) << 8);
        self.w
    }
}
#[doc = "Off-state selection for Idle mode This bit is used when MOE=0 on channels configured as outputs. See OC/OCN enable description for more details (enable register (TIM15_CCER) on page 818). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register).\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum OSSI_A {
    #[doc = "0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0)"]
    B_0X0 = 0,
    #[doc = "1: When inactive, OC/OCN outputs are forced first with their idle level as soon as CCxE=1 or CCxNE=1. OC/OCN enable output signal=1)"]
    B_0X1 = 1,
}
impl From<OSSI_A> for bool {
    #[inline(always)]
    fn from(variant: OSSI_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `OSSI` reader - Off-state selection for Idle mode This bit is used when MOE=0 on channels configured as outputs. See OC/OCN enable description for more details (enable register (TIM15_CCER) on page 818). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register)."]
pub struct OSSI_R(crate::FieldReader<bool, OSSI_A>);
impl OSSI_R {
    pub(crate) fn new(bits: bool) -> Self {
        OSSI_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> OSSI_A {
        match self.bits {
            false => OSSI_A::B_0X0,
            true => OSSI_A::B_0X1,
        }
    }
    #[doc = "Checks if the value of the field is `B_0X0`"]
    #[inline(always)]
    pub fn is_b_0x0(&self) -> bool {
        **self == OSSI_A::B_0X0
    }
    #[doc = "Checks if the value of the field is `B_0X1`"]
    #[inline(always)]
    pub fn is_b_0x1(&self) -> bool {
        **self == OSSI_A::B_0X1
    }
}
impl core::ops::Deref for OSSI_R {
    type Target = crate::FieldReader<bool, OSSI_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `OSSI` writer - Off-state selection for Idle mode This bit is used when MOE=0 on channels configured as outputs. See OC/OCN enable description for more details (enable register (TIM15_CCER) on page 818). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register)."]
pub struct OSSI_W<'a> {
    w: &'a mut W,
}
impl<'a> OSSI_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: OSSI_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0)"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(OSSI_A::B_0X0)
    }
    #[doc = "When inactive, OC/OCN outputs are forced first with their idle level as soon as CCxE=1 or CCxNE=1. OC/OCN enable output signal=1)"]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(OSSI_A::B_0X1)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 10)) | ((value as u32 & 0x01) << 10);
        self.w
    }
}
#[doc = "Off-state selection for Run mode This bit is used when MOE=1 on channels that have a complementary output which are configured as outputs. OSSR is not implemented if no complementary output is implemented in the timer. See OC/OCN enable description for more details (enable register (TIM15_CCER) on page 818). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register).\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum OSSR_A {
    #[doc = "0: When inactive, OC/OCN outputs are disabled (the timer releases the output control which is taken over by the AFIO logic, which forces a Hi-Z state)"]
    B_0X0 = 0,
    #[doc = "1: When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 (the output is still controlled by the timer). "]
    B_0X1 = 1,
}
impl From<OSSR_A> for bool {
    #[inline(always)]
    fn from(variant: OSSR_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `OSSR` reader - Off-state selection for Run mode This bit is used when MOE=1 on channels that have a complementary output which are configured as outputs. OSSR is not implemented if no complementary output is implemented in the timer. See OC/OCN enable description for more details (enable register (TIM15_CCER) on page 818). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register)."]
pub struct OSSR_R(crate::FieldReader<bool, OSSR_A>);
impl OSSR_R {
    pub(crate) fn new(bits: bool) -> Self {
        OSSR_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> OSSR_A {
        match self.bits {
            false => OSSR_A::B_0X0,
            true => OSSR_A::B_0X1,
        }
    }
    #[doc = "Checks if the value of the field is `B_0X0`"]
    #[inline(always)]
    pub fn is_b_0x0(&self) -> bool {
        **self == OSSR_A::B_0X0
    }
    #[doc = "Checks if the value of the field is `B_0X1`"]
    #[inline(always)]
    pub fn is_b_0x1(&self) -> bool {
        **self == OSSR_A::B_0X1
    }
}
impl core::ops::Deref for OSSR_R {
    type Target = crate::FieldReader<bool, OSSR_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `OSSR` writer - Off-state selection for Run mode This bit is used when MOE=1 on channels that have a complementary output which are configured as outputs. OSSR is not implemented if no complementary output is implemented in the timer. See OC/OCN enable description for more details (enable register (TIM15_CCER) on page 818). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register)."]
pub struct OSSR_W<'a> {
    w: &'a mut W,
}
impl<'a> OSSR_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: OSSR_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "When inactive, OC/OCN outputs are disabled (the timer releases the output control which is taken over by the AFIO logic, which forces a Hi-Z state)"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(OSSR_A::B_0X0)
    }
    #[doc = "When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 (the output is still controlled by the timer)."]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(OSSR_A::B_0X1)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 11)) | ((value as u32 & 0x01) << 11);
        self.w
    }
}
#[doc = "Break enable 1; Break inputs (BRK and CCS clock failure event) enabled This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum BKE_A {
    #[doc = "0: Break inputs (BRK and CCS clock failure event) disabled"]
    B_0X0 = 0,
}
impl From<BKE_A> for bool {
    #[inline(always)]
    fn from(variant: BKE_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `BKE` reader - Break enable 1; Break inputs (BRK and CCS clock failure event) enabled This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective."]
pub struct BKE_R(crate::FieldReader<bool, BKE_A>);
impl BKE_R {
    pub(crate) fn new(bits: bool) -> Self {
        BKE_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> Option<BKE_A> {
        match self.bits {
            false => Some(BKE_A::B_0X0),
            _ => None,
        }
    }
    #[doc = "Checks if the value of the field is `B_0X0`"]
    #[inline(always)]
    pub fn is_b_0x0(&self) -> bool {
        **self == BKE_A::B_0X0
    }
}
impl core::ops::Deref for BKE_R {
    type Target = crate::FieldReader<bool, BKE_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `BKE` writer - Break enable 1; Break inputs (BRK and CCS clock failure event) enabled This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective."]
pub struct BKE_W<'a> {
    w: &'a mut W,
}
impl<'a> BKE_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: BKE_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "Break inputs (BRK and CCS clock failure event) disabled"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(BKE_A::B_0X0)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 12)) | ((value as u32 & 0x01) << 12);
        self.w
    }
}
#[doc = "Break polarity Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum BKP_A {
    #[doc = "0: Break input BRK is active low"]
    B_0X0 = 0,
    #[doc = "1: Break input BRK is active high"]
    B_0X1 = 1,
}
impl From<BKP_A> for bool {
    #[inline(always)]
    fn from(variant: BKP_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `BKP` reader - Break polarity Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Any write operation to this bit takes a delay of 1 APB clock cycle to become effective."]
pub struct BKP_R(crate::FieldReader<bool, BKP_A>);
impl BKP_R {
    pub(crate) fn new(bits: bool) -> Self {
        BKP_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> BKP_A {
        match self.bits {
            false => BKP_A::B_0X0,
            true => BKP_A::B_0X1,
        }
    }
    #[doc = "Checks if the value of the field is `B_0X0`"]
    #[inline(always)]
    pub fn is_b_0x0(&self) -> bool {
        **self == BKP_A::B_0X0
    }
    #[doc = "Checks if the value of the field is `B_0X1`"]
    #[inline(always)]
    pub fn is_b_0x1(&self) -> bool {
        **self == BKP_A::B_0X1
    }
}
impl core::ops::Deref for BKP_R {
    type Target = crate::FieldReader<bool, BKP_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `BKP` writer - Break polarity Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Any write operation to this bit takes a delay of 1 APB clock cycle to become effective."]
pub struct BKP_W<'a> {
    w: &'a mut W,
}
impl<'a> BKP_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: BKP_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "Break input BRK is active low"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(BKP_A::B_0X0)
    }
    #[doc = "Break input BRK is active high"]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(BKP_A::B_0X1)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 13)) | ((value as u32 & 0x01) << 13);
        self.w
    }
}
#[doc = "Automatic output enable Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register).\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum AOE_A {
    #[doc = "0: MOE can be set only by software"]
    B_0X0 = 0,
    #[doc = "1: MOE can be set by software or automatically at the next update event (if the break input is not be active)"]
    B_0X1 = 1,
}
impl From<AOE_A> for bool {
    #[inline(always)]
    fn from(variant: AOE_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `AOE` reader - Automatic output enable Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)."]
pub struct AOE_R(crate::FieldReader<bool, AOE_A>);
impl AOE_R {
    pub(crate) fn new(bits: bool) -> Self {
        AOE_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> AOE_A {
        match self.bits {
            false => AOE_A::B_0X0,
            true => AOE_A::B_0X1,
        }
    }
    #[doc = "Checks if the value of the field is `B_0X0`"]
    #[inline(always)]
    pub fn is_b_0x0(&self) -> bool {
        **self == AOE_A::B_0X0
    }
    #[doc = "Checks if the value of the field is `B_0X1`"]
    #[inline(always)]
    pub fn is_b_0x1(&self) -> bool {
        **self == AOE_A::B_0X1
    }
}
impl core::ops::Deref for AOE_R {
    type Target = crate::FieldReader<bool, AOE_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `AOE` writer - Automatic output enable Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)."]
pub struct AOE_W<'a> {
    w: &'a mut W,
}
impl<'a> AOE_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: AOE_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "MOE can be set only by software"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(AOE_A::B_0X0)
    }
    #[doc = "MOE can be set by software or automatically at the next update event (if the break input is not be active)"]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(AOE_A::B_0X1)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 14)) | ((value as u32 & 0x01) << 14);
        self.w
    }
}
#[doc = "Main output enable This bit is cleared asynchronously by hardware as soon as the break input is active. It is set by software or automatically depending on the AOE bit. It is acting only on the channels which are configured in output. See OC/OCN enable description for more details (enable register (TIM15_CCER) on page 818).\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum MOE_A {
    #[doc = "0: OC and OCN outputs are disabled or forced to idle state depending on the OSSI bit."]
    B_0X0 = 0,
    #[doc = "1: OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE in TIMx_CCER register)"]
    B_0X1 = 1,
}
impl From<MOE_A> for bool {
    #[inline(always)]
    fn from(variant: MOE_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `MOE` reader - Main output enable This bit is cleared asynchronously by hardware as soon as the break input is active. It is set by software or automatically depending on the AOE bit. It is acting only on the channels which are configured in output. See OC/OCN enable description for more details (enable register (TIM15_CCER) on page 818)."]
pub struct MOE_R(crate::FieldReader<bool, MOE_A>);
impl MOE_R {
    pub(crate) fn new(bits: bool) -> Self {
        MOE_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> MOE_A {
        match self.bits {
            false => MOE_A::B_0X0,
            true => MOE_A::B_0X1,
        }
    }
    #[doc = "Checks if the value of the field is `B_0X0`"]
    #[inline(always)]
    pub fn is_b_0x0(&self) -> bool {
        **self == MOE_A::B_0X0
    }
    #[doc = "Checks if the value of the field is `B_0X1`"]
    #[inline(always)]
    pub fn is_b_0x1(&self) -> bool {
        **self == MOE_A::B_0X1
    }
}
impl core::ops::Deref for MOE_R {
    type Target = crate::FieldReader<bool, MOE_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `MOE` writer - Main output enable This bit is cleared asynchronously by hardware as soon as the break input is active. It is set by software or automatically depending on the AOE bit. It is acting only on the channels which are configured in output. See OC/OCN enable description for more details (enable register (TIM15_CCER) on page 818)."]
pub struct MOE_W<'a> {
    w: &'a mut W,
}
impl<'a> MOE_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: MOE_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "OC and OCN outputs are disabled or forced to idle state depending on the OSSI bit."]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(MOE_A::B_0X0)
    }
    #[doc = "OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE in TIMx_CCER register)"]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(MOE_A::B_0X1)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 15)) | ((value as u32 & 0x01) << 15);
        self.w
    }
}
#[doc = "Break filter This bit-field defines the frequency used to sample the BRK input signal and the length of the digital filter applied to BRK. The digital filter is made of an event counter in which N events are needed to validate a transition on the output: Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register).\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
#[repr(u8)]
pub enum BKF_A {
    #[doc = "0: No filter, BRK acts asynchronously"]
    B_0X0 = 0,
    #[doc = "1: fSAMPLING=fCK_INT, N=2"]
    B_0X1 = 1,
    #[doc = "2: fSAMPLING=fCK_INT, N=4"]
    B_0X2 = 2,
    #[doc = "3: fSAMPLING=fCK_INT, N=8"]
    B_0X3 = 3,
    #[doc = "4: fSAMPLING=fDTS/2, N=6"]
    B_0X4 = 4,
    #[doc = "5: fSAMPLING=fDTS/2, N=8"]
    B_0X5 = 5,
    #[doc = "6: fSAMPLING=fDTS/4, N=6"]
    B_0X6 = 6,
    #[doc = "7: fSAMPLING=fDTS/4, N=8"]
    B_0X7 = 7,
    #[doc = "8: fSAMPLING=fDTS/8, N=6"]
    B_0X8 = 8,
    #[doc = "9: fSAMPLING=fDTS/8, N=8"]
    B_0X9 = 9,
    #[doc = "10: fSAMPLING=fDTS/16, N=5"]
    B_0XA = 10,
    #[doc = "11: fSAMPLING=fDTS/16, N=6"]
    B_0XB = 11,
    #[doc = "12: fSAMPLING=fDTS/16, N=8"]
    B_0XC = 12,
    #[doc = "13: fSAMPLING=fDTS/32, N=5"]
    B_0XD = 13,
    #[doc = "14: fSAMPLING=fDTS/32, N=6"]
    B_0XE = 14,
    #[doc = "15: fSAMPLING=fDTS/32, N=8"]
    B_0XF = 15,
}
impl From<BKF_A> for u8 {
    #[inline(always)]
    fn from(variant: BKF_A) -> Self {
        variant as _
    }
}
#[doc = "Field `BKF` reader - Break filter This bit-field defines the frequency used to sample the BRK input signal and the length of the digital filter applied to BRK. The digital filter is made of an event counter in which N events are needed to validate a transition on the output: Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)."]
pub struct BKF_R(crate::FieldReader<u8, BKF_A>);
impl BKF_R {
    pub(crate) fn new(bits: u8) -> Self {
        BKF_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> BKF_A {
        match self.bits {
            0 => BKF_A::B_0X0,
            1 => BKF_A::B_0X1,
            2 => BKF_A::B_0X2,
            3 => BKF_A::B_0X3,
            4 => BKF_A::B_0X4,
            5 => BKF_A::B_0X5,
            6 => BKF_A::B_0X6,
            7 => BKF_A::B_0X7,
            8 => BKF_A::B_0X8,
            9 => BKF_A::B_0X9,
            10 => BKF_A::B_0XA,
            11 => BKF_A::B_0XB,
            12 => BKF_A::B_0XC,
            13 => BKF_A::B_0XD,
            14 => BKF_A::B_0XE,
            15 => BKF_A::B_0XF,
            _ => unreachable!(),
        }
    }
    #[doc = "Checks if the value of the field is `B_0X0`"]
    #[inline(always)]
    pub fn is_b_0x0(&self) -> bool {
        **self == BKF_A::B_0X0
    }
    #[doc = "Checks if the value of the field is `B_0X1`"]
    #[inline(always)]
    pub fn is_b_0x1(&self) -> bool {
        **self == BKF_A::B_0X1
    }
    #[doc = "Checks if the value of the field is `B_0X2`"]
    #[inline(always)]
    pub fn is_b_0x2(&self) -> bool {
        **self == BKF_A::B_0X2
    }
    #[doc = "Checks if the value of the field is `B_0X3`"]
    #[inline(always)]
    pub fn is_b_0x3(&self) -> bool {
        **self == BKF_A::B_0X3
    }
    #[doc = "Checks if the value of the field is `B_0X4`"]
    #[inline(always)]
    pub fn is_b_0x4(&self) -> bool {
        **self == BKF_A::B_0X4
    }
    #[doc = "Checks if the value of the field is `B_0X5`"]
    #[inline(always)]
    pub fn is_b_0x5(&self) -> bool {
        **self == BKF_A::B_0X5
    }
    #[doc = "Checks if the value of the field is `B_0X6`"]
    #[inline(always)]
    pub fn is_b_0x6(&self) -> bool {
        **self == BKF_A::B_0X6
    }
    #[doc = "Checks if the value of the field is `B_0X7`"]
    #[inline(always)]
    pub fn is_b_0x7(&self) -> bool {
        **self == BKF_A::B_0X7
    }
    #[doc = "Checks if the value of the field is `B_0X8`"]
    #[inline(always)]
    pub fn is_b_0x8(&self) -> bool {
        **self == BKF_A::B_0X8
    }
    #[doc = "Checks if the value of the field is `B_0X9`"]
    #[inline(always)]
    pub fn is_b_0x9(&self) -> bool {
        **self == BKF_A::B_0X9
    }
    #[doc = "Checks if the value of the field is `B_0XA`"]
    #[inline(always)]
    pub fn is_b_0x_a(&self) -> bool {
        **self == BKF_A::B_0XA
    }
    #[doc = "Checks if the value of the field is `B_0XB`"]
    #[inline(always)]
    pub fn is_b_0x_b(&self) -> bool {
        **self == BKF_A::B_0XB
    }
    #[doc = "Checks if the value of the field is `B_0XC`"]
    #[inline(always)]
    pub fn is_b_0x_c(&self) -> bool {
        **self == BKF_A::B_0XC
    }
    #[doc = "Checks if the value of the field is `B_0XD`"]
    #[inline(always)]
    pub fn is_b_0x_d(&self) -> bool {
        **self == BKF_A::B_0XD
    }
    #[doc = "Checks if the value of the field is `B_0XE`"]
    #[inline(always)]
    pub fn is_b_0x_e(&self) -> bool {
        **self == BKF_A::B_0XE
    }
    #[doc = "Checks if the value of the field is `B_0XF`"]
    #[inline(always)]
    pub fn is_b_0x_f(&self) -> bool {
        **self == BKF_A::B_0XF
    }
}
impl core::ops::Deref for BKF_R {
    type Target = crate::FieldReader<u8, BKF_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `BKF` writer - Break filter This bit-field defines the frequency used to sample the BRK input signal and the length of the digital filter applied to BRK. The digital filter is made of an event counter in which N events are needed to validate a transition on the output: Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)."]
pub struct BKF_W<'a> {
    w: &'a mut W,
}
impl<'a> BKF_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: BKF_A) -> &'a mut W {
        self.bits(variant.into())
    }
    #[doc = "No filter, BRK acts asynchronously"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(BKF_A::B_0X0)
    }
    #[doc = "fSAMPLING=fCK_INT, N=2"]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(BKF_A::B_0X1)
    }
    #[doc = "fSAMPLING=fCK_INT, N=4"]
    #[inline(always)]
    pub fn b_0x2(self) -> &'a mut W {
        self.variant(BKF_A::B_0X2)
    }
    #[doc = "fSAMPLING=fCK_INT, N=8"]
    #[inline(always)]
    pub fn b_0x3(self) -> &'a mut W {
        self.variant(BKF_A::B_0X3)
    }
    #[doc = "fSAMPLING=fDTS/2, N=6"]
    #[inline(always)]
    pub fn b_0x4(self) -> &'a mut W {
        self.variant(BKF_A::B_0X4)
    }
    #[doc = "fSAMPLING=fDTS/2, N=8"]
    #[inline(always)]
    pub fn b_0x5(self) -> &'a mut W {
        self.variant(BKF_A::B_0X5)
    }
    #[doc = "fSAMPLING=fDTS/4, N=6"]
    #[inline(always)]
    pub fn b_0x6(self) -> &'a mut W {
        self.variant(BKF_A::B_0X6)
    }
    #[doc = "fSAMPLING=fDTS/4, N=8"]
    #[inline(always)]
    pub fn b_0x7(self) -> &'a mut W {
        self.variant(BKF_A::B_0X7)
    }
    #[doc = "fSAMPLING=fDTS/8, N=6"]
    #[inline(always)]
    pub fn b_0x8(self) -> &'a mut W {
        self.variant(BKF_A::B_0X8)
    }
    #[doc = "fSAMPLING=fDTS/8, N=8"]
    #[inline(always)]
    pub fn b_0x9(self) -> &'a mut W {
        self.variant(BKF_A::B_0X9)
    }
    #[doc = "fSAMPLING=fDTS/16, N=5"]
    #[inline(always)]
    pub fn b_0x_a(self) -> &'a mut W {
        self.variant(BKF_A::B_0XA)
    }
    #[doc = "fSAMPLING=fDTS/16, N=6"]
    #[inline(always)]
    pub fn b_0x_b(self) -> &'a mut W {
        self.variant(BKF_A::B_0XB)
    }
    #[doc = "fSAMPLING=fDTS/16, N=8"]
    #[inline(always)]
    pub fn b_0x_c(self) -> &'a mut W {
        self.variant(BKF_A::B_0XC)
    }
    #[doc = "fSAMPLING=fDTS/32, N=5"]
    #[inline(always)]
    pub fn b_0x_d(self) -> &'a mut W {
        self.variant(BKF_A::B_0XD)
    }
    #[doc = "fSAMPLING=fDTS/32, N=6"]
    #[inline(always)]
    pub fn b_0x_e(self) -> &'a mut W {
        self.variant(BKF_A::B_0XE)
    }
    #[doc = "fSAMPLING=fDTS/32, N=8"]
    #[inline(always)]
    pub fn b_0x_f(self) -> &'a mut W {
        self.variant(BKF_A::B_0XF)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x0f << 16)) | ((value as u32 & 0x0f) << 16);
        self.w
    }
}
#[doc = "Break Disarm This bit is cleared by hardware when no break source is active. The BKDSRM bit must be set by software to release the bidirectional output control (open-drain output in Hi-Z state) and then be polled it until it is reset by hardware, indicating that the fault condition has disappeared. Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum BKDSRM_A {
    #[doc = "0: Break input BRK is armed"]
    B_0X0 = 0,
    #[doc = "1: Break input BRK is disarmed"]
    B_0X1 = 1,
}
impl From<BKDSRM_A> for bool {
    #[inline(always)]
    fn from(variant: BKDSRM_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `BKDSRM` reader - Break Disarm This bit is cleared by hardware when no break source is active. The BKDSRM bit must be set by software to release the bidirectional output control (open-drain output in Hi-Z state) and then be polled it until it is reset by hardware, indicating that the fault condition has disappeared. Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective."]
pub struct BKDSRM_R(crate::FieldReader<bool, BKDSRM_A>);
impl BKDSRM_R {
    pub(crate) fn new(bits: bool) -> Self {
        BKDSRM_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> BKDSRM_A {
        match self.bits {
            false => BKDSRM_A::B_0X0,
            true => BKDSRM_A::B_0X1,
        }
    }
    #[doc = "Checks if the value of the field is `B_0X0`"]
    #[inline(always)]
    pub fn is_b_0x0(&self) -> bool {
        **self == BKDSRM_A::B_0X0
    }
    #[doc = "Checks if the value of the field is `B_0X1`"]
    #[inline(always)]
    pub fn is_b_0x1(&self) -> bool {
        **self == BKDSRM_A::B_0X1
    }
}
impl core::ops::Deref for BKDSRM_R {
    type Target = crate::FieldReader<bool, BKDSRM_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `BKDSRM` writer - Break Disarm This bit is cleared by hardware when no break source is active. The BKDSRM bit must be set by software to release the bidirectional output control (open-drain output in Hi-Z state) and then be polled it until it is reset by hardware, indicating that the fault condition has disappeared. Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective."]
pub struct BKDSRM_W<'a> {
    w: &'a mut W,
}
impl<'a> BKDSRM_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: BKDSRM_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "Break input BRK is armed"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(BKDSRM_A::B_0X0)
    }
    #[doc = "Break input BRK is disarmed"]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(BKDSRM_A::B_0X1)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 26)) | ((value as u32 & 0x01) << 26);
        self.w
    }
}
#[doc = "Break Bidirectional In the bidirectional mode (BKBID bit set to 1), the break input is configured both in input mode and in open drain output mode. Any active break event asserts a low logic level on the Break input to indicate an internal break event to external devices. Note: This bit cannot be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.\n\nValue on reset: 0"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum BKBID_A {
    #[doc = "0: Break input BRK in input mode"]
    B_0X0 = 0,
    #[doc = "1: Break input BRK in bidirectional mode"]
    B_0X1 = 1,
}
impl From<BKBID_A> for bool {
    #[inline(always)]
    fn from(variant: BKBID_A) -> Self {
        variant as u8 != 0
    }
}
#[doc = "Field `BKBID` reader - Break Bidirectional In the bidirectional mode (BKBID bit set to 1), the break input is configured both in input mode and in open drain output mode. Any active break event asserts a low logic level on the Break input to indicate an internal break event to external devices. Note: This bit cannot be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective."]
pub struct BKBID_R(crate::FieldReader<bool, BKBID_A>);
impl BKBID_R {
    pub(crate) fn new(bits: bool) -> Self {
        BKBID_R(crate::FieldReader::new(bits))
    }
    #[doc = r"Get enumerated values variant"]
    #[inline(always)]
    pub fn variant(&self) -> BKBID_A {
        match self.bits {
            false => BKBID_A::B_0X0,
            true => BKBID_A::B_0X1,
        }
    }
    #[doc = "Checks if the value of the field is `B_0X0`"]
    #[inline(always)]
    pub fn is_b_0x0(&self) -> bool {
        **self == BKBID_A::B_0X0
    }
    #[doc = "Checks if the value of the field is `B_0X1`"]
    #[inline(always)]
    pub fn is_b_0x1(&self) -> bool {
        **self == BKBID_A::B_0X1
    }
}
impl core::ops::Deref for BKBID_R {
    type Target = crate::FieldReader<bool, BKBID_A>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `BKBID` writer - Break Bidirectional In the bidirectional mode (BKBID bit set to 1), the break input is configured both in input mode and in open drain output mode. Any active break event asserts a low logic level on the Break input to indicate an internal break event to external devices. Note: This bit cannot be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective."]
pub struct BKBID_W<'a> {
    w: &'a mut W,
}
impl<'a> BKBID_W<'a> {
    #[doc = r"Writes `variant` to the field"]
    #[inline(always)]
    pub fn variant(self, variant: BKBID_A) -> &'a mut W {
        self.bit(variant.into())
    }
    #[doc = "Break input BRK in input mode"]
    #[inline(always)]
    pub fn b_0x0(self) -> &'a mut W {
        self.variant(BKBID_A::B_0X0)
    }
    #[doc = "Break input BRK in bidirectional mode"]
    #[inline(always)]
    pub fn b_0x1(self) -> &'a mut W {
        self.variant(BKBID_A::B_0X1)
    }
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 28)) | ((value as u32 & 0x01) << 28);
        self.w
    }
}
impl R {
    #[doc = "Bits 0:7 - Dead-time generator setup This bit-field defines the duration of the dead-time inserted between the complementary outputs. DT correspond to this duration. DTG\\[7:5\\]=0xx => DT=DTG\\[7:0\\]x tdtg with tdtg=tDTS DTG\\[7:5\\]=10x => DT=(64+DTG\\[5:0\\])xtdtg with Tdtg=2xtDTS DTG\\[7:5\\]=110 => DT=(32+DTG\\[4:0\\])xtdtg with Tdtg=8xtDTS DTG\\[7:5\\]=111 => DT=(32+DTG\\[4:0\\])xtdtg with Tdtg=16xtDTS Example if TDTS=125ns (8MHz), dead-time possible values are: 0 to 15875 ns by 125 ns steps, 16 µs to 31750 ns by 250 ns steps, 32 µs to 63 µs by 1 µs steps, 64 µs to 126 µs by 2 µs steps Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register)."]
    #[inline(always)]
    pub fn dtg(&self) -> DTG_R {
        DTG_R::new((self.bits & 0xff) as u8)
    }
    #[doc = "Bits 8:9 - Lock configuration These bits offer a write protection against software errors. Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register has been written, their content is frozen until the next reset."]
    #[inline(always)]
    pub fn lock(&self) -> LOCK_R {
        LOCK_R::new(((self.bits >> 8) & 0x03) as u8)
    }
    #[doc = "Bit 10 - Off-state selection for Idle mode This bit is used when MOE=0 on channels configured as outputs. See OC/OCN enable description for more details (enable register (TIM15_CCER) on page 818). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register)."]
    #[inline(always)]
    pub fn ossi(&self) -> OSSI_R {
        OSSI_R::new(((self.bits >> 10) & 0x01) != 0)
    }
    #[doc = "Bit 11 - Off-state selection for Run mode This bit is used when MOE=1 on channels that have a complementary output which are configured as outputs. OSSR is not implemented if no complementary output is implemented in the timer. See OC/OCN enable description for more details (enable register (TIM15_CCER) on page 818). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register)."]
    #[inline(always)]
    pub fn ossr(&self) -> OSSR_R {
        OSSR_R::new(((self.bits >> 11) & 0x01) != 0)
    }
    #[doc = "Bit 12 - Break enable 1; Break inputs (BRK and CCS clock failure event) enabled This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective."]
    #[inline(always)]
    pub fn bke(&self) -> BKE_R {
        BKE_R::new(((self.bits >> 12) & 0x01) != 0)
    }
    #[doc = "Bit 13 - Break polarity Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Any write operation to this bit takes a delay of 1 APB clock cycle to become effective."]
    #[inline(always)]
    pub fn bkp(&self) -> BKP_R {
        BKP_R::new(((self.bits >> 13) & 0x01) != 0)
    }
    #[doc = "Bit 14 - Automatic output enable Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)."]
    #[inline(always)]
    pub fn aoe(&self) -> AOE_R {
        AOE_R::new(((self.bits >> 14) & 0x01) != 0)
    }
    #[doc = "Bit 15 - Main output enable This bit is cleared asynchronously by hardware as soon as the break input is active. It is set by software or automatically depending on the AOE bit. It is acting only on the channels which are configured in output. See OC/OCN enable description for more details (enable register (TIM15_CCER) on page 818)."]
    #[inline(always)]
    pub fn moe(&self) -> MOE_R {
        MOE_R::new(((self.bits >> 15) & 0x01) != 0)
    }
    #[doc = "Bits 16:19 - Break filter This bit-field defines the frequency used to sample the BRK input signal and the length of the digital filter applied to BRK. The digital filter is made of an event counter in which N events are needed to validate a transition on the output: Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)."]
    #[inline(always)]
    pub fn bkf(&self) -> BKF_R {
        BKF_R::new(((self.bits >> 16) & 0x0f) as u8)
    }
    #[doc = "Bit 26 - Break Disarm This bit is cleared by hardware when no break source is active. The BKDSRM bit must be set by software to release the bidirectional output control (open-drain output in Hi-Z state) and then be polled it until it is reset by hardware, indicating that the fault condition has disappeared. Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective."]
    #[inline(always)]
    pub fn bkdsrm(&self) -> BKDSRM_R {
        BKDSRM_R::new(((self.bits >> 26) & 0x01) != 0)
    }
    #[doc = "Bit 28 - Break Bidirectional In the bidirectional mode (BKBID bit set to 1), the break input is configured both in input mode and in open drain output mode. Any active break event asserts a low logic level on the Break input to indicate an internal break event to external devices. Note: This bit cannot be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective."]
    #[inline(always)]
    pub fn bkbid(&self) -> BKBID_R {
        BKBID_R::new(((self.bits >> 28) & 0x01) != 0)
    }
}
impl W {
    #[doc = "Bits 0:7 - Dead-time generator setup This bit-field defines the duration of the dead-time inserted between the complementary outputs. DT correspond to this duration. DTG\\[7:5\\]=0xx => DT=DTG\\[7:0\\]x tdtg with tdtg=tDTS DTG\\[7:5\\]=10x => DT=(64+DTG\\[5:0\\])xtdtg with Tdtg=2xtDTS DTG\\[7:5\\]=110 => DT=(32+DTG\\[4:0\\])xtdtg with Tdtg=8xtDTS DTG\\[7:5\\]=111 => DT=(32+DTG\\[4:0\\])xtdtg with Tdtg=16xtDTS Example if TDTS=125ns (8MHz), dead-time possible values are: 0 to 15875 ns by 125 ns steps, 16 µs to 31750 ns by 250 ns steps, 32 µs to 63 µs by 1 µs steps, 64 µs to 126 µs by 2 µs steps Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register)."]
    #[inline(always)]
    pub fn dtg(&mut self) -> DTG_W {
        DTG_W { w: self }
    }
    #[doc = "Bits 8:9 - Lock configuration These bits offer a write protection against software errors. Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register has been written, their content is frozen until the next reset."]
    #[inline(always)]
    pub fn lock(&mut self) -> LOCK_W {
        LOCK_W { w: self }
    }
    #[doc = "Bit 10 - Off-state selection for Idle mode This bit is used when MOE=0 on channels configured as outputs. See OC/OCN enable description for more details (enable register (TIM15_CCER) on page 818). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register)."]
    #[inline(always)]
    pub fn ossi(&mut self) -> OSSI_W {
        OSSI_W { w: self }
    }
    #[doc = "Bit 11 - Off-state selection for Run mode This bit is used when MOE=1 on channels that have a complementary output which are configured as outputs. OSSR is not implemented if no complementary output is implemented in the timer. See OC/OCN enable description for more details (enable register (TIM15_CCER) on page 818). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register)."]
    #[inline(always)]
    pub fn ossr(&mut self) -> OSSR_W {
        OSSR_W { w: self }
    }
    #[doc = "Bit 12 - Break enable 1; Break inputs (BRK and CCS clock failure event) enabled This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective."]
    #[inline(always)]
    pub fn bke(&mut self) -> BKE_W {
        BKE_W { w: self }
    }
    #[doc = "Bit 13 - Break polarity Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Any write operation to this bit takes a delay of 1 APB clock cycle to become effective."]
    #[inline(always)]
    pub fn bkp(&mut self) -> BKP_W {
        BKP_W { w: self }
    }
    #[doc = "Bit 14 - Automatic output enable Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)."]
    #[inline(always)]
    pub fn aoe(&mut self) -> AOE_W {
        AOE_W { w: self }
    }
    #[doc = "Bit 15 - Main output enable This bit is cleared asynchronously by hardware as soon as the break input is active. It is set by software or automatically depending on the AOE bit. It is acting only on the channels which are configured in output. See OC/OCN enable description for more details (enable register (TIM15_CCER) on page 818)."]
    #[inline(always)]
    pub fn moe(&mut self) -> MOE_W {
        MOE_W { w: self }
    }
    #[doc = "Bits 16:19 - Break filter This bit-field defines the frequency used to sample the BRK input signal and the length of the digital filter applied to BRK. The digital filter is made of an event counter in which N events are needed to validate a transition on the output: Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register)."]
    #[inline(always)]
    pub fn bkf(&mut self) -> BKF_W {
        BKF_W { w: self }
    }
    #[doc = "Bit 26 - Break Disarm This bit is cleared by hardware when no break source is active. The BKDSRM bit must be set by software to release the bidirectional output control (open-drain output in Hi-Z state) and then be polled it until it is reset by hardware, indicating that the fault condition has disappeared. Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective."]
    #[inline(always)]
    pub fn bkdsrm(&mut self) -> BKDSRM_W {
        BKDSRM_W { w: self }
    }
    #[doc = "Bit 28 - Break Bidirectional In the bidirectional mode (BKBID bit set to 1), the break input is configured both in input mode and in open drain output mode. Any active break event asserts a low logic level on the Break input to indicate an internal break event to external devices. Note: This bit cannot be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective."]
    #[inline(always)]
    pub fn bkbid(&mut self) -> BKBID_W {
        BKBID_W { w: self }
    }
    #[doc = "Writes raw bits to the register."]
    #[inline(always)]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.0.bits(bits);
        self
    }
}
#[doc = "break and dead-time register\n\nThis register you can [`read`](crate::generic::Reg::read), [`write_with_zero`](crate::generic::Reg::write_with_zero), [`reset`](crate::generic::Reg::reset), [`write`](crate::generic::Reg::write), [`modify`](crate::generic::Reg::modify). See [API](https://docs.rs/svd2rust/#read--modify--write-api).\n\nFor information about available fields see [bdtr](index.html) module"]
pub struct BDTR_SPEC;
impl crate::RegisterSpec for BDTR_SPEC {
    type Ux = u32;
}
#[doc = "`read()` method returns [bdtr::R](R) reader structure"]
impl crate::Readable for BDTR_SPEC {
    type Reader = R;
}
#[doc = "`write(|w| ..)` method takes [bdtr::W](W) writer structure"]
impl crate::Writable for BDTR_SPEC {
    type Writer = W;
}
#[doc = "`reset()` method sets BDTR to value 0"]
impl crate::Resettable for BDTR_SPEC {
    #[inline(always)]
    fn reset_value() -> Self::Ux {
        0
    }
}