1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
#[doc = "Register `CEC_CFGR` reader"]
pub struct R(crate::R<CEC_CFGR_SPEC>);
impl core::ops::Deref for R {
    type Target = crate::R<CEC_CFGR_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl From<crate::R<CEC_CFGR_SPEC>> for R {
    #[inline(always)]
    fn from(reader: crate::R<CEC_CFGR_SPEC>) -> Self {
        R(reader)
    }
}
#[doc = "Register `CEC_CFGR` writer"]
pub struct W(crate::W<CEC_CFGR_SPEC>);
impl core::ops::Deref for W {
    type Target = crate::W<CEC_CFGR_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl core::ops::DerefMut for W {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}
impl From<crate::W<CEC_CFGR_SPEC>> for W {
    #[inline(always)]
    fn from(writer: crate::W<CEC_CFGR_SPEC>) -> Self {
        W(writer)
    }
}
#[doc = "Field `SFT` reader - Signal Free Time SFT bits are set by software. In the SFT=0x0 configuration the number of nominal data bit periods waited before transmission is ruled by hardware according to the transmission history. In all the other configurations the SFT number is determined by software. * 0x0 ** 2.5 Data-Bit periods if CEC is the last bus initiator with unsuccessful transmission (ARBLST=1, TXERR=1, TXUDR=1 or TXACKE= 1) ** 4 Data-Bit periods if CEC is the new bus initiator ** 6 Data-Bit periods if CEC is the last bus initiator with successful transmission (TXEOM=1) * 0x1: 0.5 nominal data bit periods * 0x2: 1.5 nominal data bit periods * 0x3: 2.5 nominal data bit periods * 0x4: 3.5 nominal data bit periods * 0x5: 4.5 nominal data bit periods * 0x6: 5.5 nominal data bit periods * 0x7: 6.5 nominal data bit periods"]
pub struct SFT_R(crate::FieldReader<u8, u8>);
impl SFT_R {
    pub(crate) fn new(bits: u8) -> Self {
        SFT_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for SFT_R {
    type Target = crate::FieldReader<u8, u8>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `SFT` writer - Signal Free Time SFT bits are set by software. In the SFT=0x0 configuration the number of nominal data bit periods waited before transmission is ruled by hardware according to the transmission history. In all the other configurations the SFT number is determined by software. * 0x0 ** 2.5 Data-Bit periods if CEC is the last bus initiator with unsuccessful transmission (ARBLST=1, TXERR=1, TXUDR=1 or TXACKE= 1) ** 4 Data-Bit periods if CEC is the new bus initiator ** 6 Data-Bit periods if CEC is the last bus initiator with successful transmission (TXEOM=1) * 0x1: 0.5 nominal data bit periods * 0x2: 1.5 nominal data bit periods * 0x3: 2.5 nominal data bit periods * 0x4: 3.5 nominal data bit periods * 0x5: 4.5 nominal data bit periods * 0x6: 5.5 nominal data bit periods * 0x7: 6.5 nominal data bit periods"]
pub struct SFT_W<'a> {
    w: &'a mut W,
}
impl<'a> SFT_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !0x07) | (value as u32 & 0x07);
        self.w
    }
}
#[doc = "Field `RXTOL` reader - Rx-Tolerance The RXTOL bit is set and cleared by software. ** Start-Bit, +/- 200 s rise, +/- 200 s fall. ** Data-Bit: +/- 200 s rise. +/- 350 s fall. ** Start-Bit: +/- 400 s rise, +/- 400 s fall ** Data-Bit: +/-300 s rise, +/- 500 s fall"]
pub struct RXTOL_R(crate::FieldReader<bool, bool>);
impl RXTOL_R {
    pub(crate) fn new(bits: bool) -> Self {
        RXTOL_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for RXTOL_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `RXTOL` writer - Rx-Tolerance The RXTOL bit is set and cleared by software. ** Start-Bit, +/- 200 s rise, +/- 200 s fall. ** Data-Bit: +/- 200 s rise. +/- 350 s fall. ** Start-Bit: +/- 400 s rise, +/- 400 s fall ** Data-Bit: +/-300 s rise, +/- 500 s fall"]
pub struct RXTOL_W<'a> {
    w: &'a mut W,
}
impl<'a> RXTOL_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 3)) | ((value as u32 & 0x01) << 3);
        self.w
    }
}
#[doc = "Field `BRESTP` reader - Rx-Stop on Bit Rising Error The BRESTP bit is set and cleared by software."]
pub struct BRESTP_R(crate::FieldReader<bool, bool>);
impl BRESTP_R {
    pub(crate) fn new(bits: bool) -> Self {
        BRESTP_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for BRESTP_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `BRESTP` writer - Rx-Stop on Bit Rising Error The BRESTP bit is set and cleared by software."]
pub struct BRESTP_W<'a> {
    w: &'a mut W,
}
impl<'a> BRESTP_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 4)) | ((value as u32 & 0x01) << 4);
        self.w
    }
}
#[doc = "Field `BREGEN` reader - Generate Error-Bit on Bit Rising Error The BREGEN bit is set and cleared by software. Note: If BRDNOGEN=0, an Error-bit is generated upon BRE detection with BRESTP=1 in broadcast even if BREGEN=0"]
pub struct BREGEN_R(crate::FieldReader<bool, bool>);
impl BREGEN_R {
    pub(crate) fn new(bits: bool) -> Self {
        BREGEN_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for BREGEN_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `BREGEN` writer - Generate Error-Bit on Bit Rising Error The BREGEN bit is set and cleared by software. Note: If BRDNOGEN=0, an Error-bit is generated upon BRE detection with BRESTP=1 in broadcast even if BREGEN=0"]
pub struct BREGEN_W<'a> {
    w: &'a mut W,
}
impl<'a> BREGEN_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 5)) | ((value as u32 & 0x01) << 5);
        self.w
    }
}
#[doc = "Field `LBPEGEN` reader - Generate Error-Bit on Long Bit Period Error The LBPEGEN bit is set and cleared by software. Note: If BRDNOGEN=0, an Error-bit is generated upon LBPE detection in broadcast even if LBPEGEN=0"]
pub struct LBPEGEN_R(crate::FieldReader<bool, bool>);
impl LBPEGEN_R {
    pub(crate) fn new(bits: bool) -> Self {
        LBPEGEN_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for LBPEGEN_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `LBPEGEN` writer - Generate Error-Bit on Long Bit Period Error The LBPEGEN bit is set and cleared by software. Note: If BRDNOGEN=0, an Error-bit is generated upon LBPE detection in broadcast even if LBPEGEN=0"]
pub struct LBPEGEN_W<'a> {
    w: &'a mut W,
}
impl<'a> LBPEGEN_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 6)) | ((value as u32 & 0x01) << 6);
        self.w
    }
}
#[doc = "Field `BRDNOGEN` reader - Avoid Error-Bit Generation in Broadcast The BRDNOGEN bit is set and cleared by software."]
pub struct BRDNOGEN_R(crate::FieldReader<bool, bool>);
impl BRDNOGEN_R {
    pub(crate) fn new(bits: bool) -> Self {
        BRDNOGEN_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for BRDNOGEN_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `BRDNOGEN` writer - Avoid Error-Bit Generation in Broadcast The BRDNOGEN bit is set and cleared by software."]
pub struct BRDNOGEN_W<'a> {
    w: &'a mut W,
}
impl<'a> BRDNOGEN_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 7)) | ((value as u32 & 0x01) << 7);
        self.w
    }
}
#[doc = "Field `SFTOPT` reader - SFT Option Bit The SFTOPT bit is set and cleared by software."]
pub struct SFTOPT_R(crate::FieldReader<bool, bool>);
impl SFTOPT_R {
    pub(crate) fn new(bits: bool) -> Self {
        SFTOPT_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for SFTOPT_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `SFTOPT` writer - SFT Option Bit The SFTOPT bit is set and cleared by software."]
pub struct SFTOPT_W<'a> {
    w: &'a mut W,
}
impl<'a> SFTOPT_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 8)) | ((value as u32 & 0x01) << 8);
        self.w
    }
}
#[doc = "Field `OAR` reader - Own addresses configuration The OAR bits are set by software to select which destination logical addresses has to be considered in receive mode. Each bit, when set, enables the CEC logical address identified by the given bit position. At the end of HEADER reception, the received destination address is compared with the enabled addresses. In case of matching address, the incoming message is acknowledged and received. In case of non-matching address, the incoming message is received only in listen mode (LSTN=1), but without acknowledge sent. Broadcast messages are always received. Example: OAR = 0b000 0000 0010 0001 means that CEC acknowledges addresses 0x0 and 0x5. Consequently, each message directed to one of these addresses is received."]
pub struct OAR_R(crate::FieldReader<u16, u16>);
impl OAR_R {
    pub(crate) fn new(bits: u16) -> Self {
        OAR_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for OAR_R {
    type Target = crate::FieldReader<u16, u16>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `OAR` writer - Own addresses configuration The OAR bits are set by software to select which destination logical addresses has to be considered in receive mode. Each bit, when set, enables the CEC logical address identified by the given bit position. At the end of HEADER reception, the received destination address is compared with the enabled addresses. In case of matching address, the incoming message is acknowledged and received. In case of non-matching address, the incoming message is received only in listen mode (LSTN=1), but without acknowledge sent. Broadcast messages are always received. Example: OAR = 0b000 0000 0010 0001 means that CEC acknowledges addresses 0x0 and 0x5. Consequently, each message directed to one of these addresses is received."]
pub struct OAR_W<'a> {
    w: &'a mut W,
}
impl<'a> OAR_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u16) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x7fff << 16)) | ((value as u32 & 0x7fff) << 16);
        self.w
    }
}
#[doc = "Field `LSTN` reader - Listen mode LSTN bit is set and cleared by software."]
pub struct LSTN_R(crate::FieldReader<bool, bool>);
impl LSTN_R {
    pub(crate) fn new(bits: bool) -> Self {
        LSTN_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for LSTN_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `LSTN` writer - Listen mode LSTN bit is set and cleared by software."]
pub struct LSTN_W<'a> {
    w: &'a mut W,
}
impl<'a> LSTN_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 31)) | ((value as u32 & 0x01) << 31);
        self.w
    }
}
impl R {
    #[doc = "Bits 0:2 - Signal Free Time SFT bits are set by software. In the SFT=0x0 configuration the number of nominal data bit periods waited before transmission is ruled by hardware according to the transmission history. In all the other configurations the SFT number is determined by software. * 0x0 ** 2.5 Data-Bit periods if CEC is the last bus initiator with unsuccessful transmission (ARBLST=1, TXERR=1, TXUDR=1 or TXACKE= 1) ** 4 Data-Bit periods if CEC is the new bus initiator ** 6 Data-Bit periods if CEC is the last bus initiator with successful transmission (TXEOM=1) * 0x1: 0.5 nominal data bit periods * 0x2: 1.5 nominal data bit periods * 0x3: 2.5 nominal data bit periods * 0x4: 3.5 nominal data bit periods * 0x5: 4.5 nominal data bit periods * 0x6: 5.5 nominal data bit periods * 0x7: 6.5 nominal data bit periods"]
    #[inline(always)]
    pub fn sft(&self) -> SFT_R {
        SFT_R::new((self.bits & 0x07) as u8)
    }
    #[doc = "Bit 3 - Rx-Tolerance The RXTOL bit is set and cleared by software. ** Start-Bit, +/- 200 s rise, +/- 200 s fall. ** Data-Bit: +/- 200 s rise. +/- 350 s fall. ** Start-Bit: +/- 400 s rise, +/- 400 s fall ** Data-Bit: +/-300 s rise, +/- 500 s fall"]
    #[inline(always)]
    pub fn rxtol(&self) -> RXTOL_R {
        RXTOL_R::new(((self.bits >> 3) & 0x01) != 0)
    }
    #[doc = "Bit 4 - Rx-Stop on Bit Rising Error The BRESTP bit is set and cleared by software."]
    #[inline(always)]
    pub fn brestp(&self) -> BRESTP_R {
        BRESTP_R::new(((self.bits >> 4) & 0x01) != 0)
    }
    #[doc = "Bit 5 - Generate Error-Bit on Bit Rising Error The BREGEN bit is set and cleared by software. Note: If BRDNOGEN=0, an Error-bit is generated upon BRE detection with BRESTP=1 in broadcast even if BREGEN=0"]
    #[inline(always)]
    pub fn bregen(&self) -> BREGEN_R {
        BREGEN_R::new(((self.bits >> 5) & 0x01) != 0)
    }
    #[doc = "Bit 6 - Generate Error-Bit on Long Bit Period Error The LBPEGEN bit is set and cleared by software. Note: If BRDNOGEN=0, an Error-bit is generated upon LBPE detection in broadcast even if LBPEGEN=0"]
    #[inline(always)]
    pub fn lbpegen(&self) -> LBPEGEN_R {
        LBPEGEN_R::new(((self.bits >> 6) & 0x01) != 0)
    }
    #[doc = "Bit 7 - Avoid Error-Bit Generation in Broadcast The BRDNOGEN bit is set and cleared by software."]
    #[inline(always)]
    pub fn brdnogen(&self) -> BRDNOGEN_R {
        BRDNOGEN_R::new(((self.bits >> 7) & 0x01) != 0)
    }
    #[doc = "Bit 8 - SFT Option Bit The SFTOPT bit is set and cleared by software."]
    #[inline(always)]
    pub fn sftopt(&self) -> SFTOPT_R {
        SFTOPT_R::new(((self.bits >> 8) & 0x01) != 0)
    }
    #[doc = "Bits 16:30 - Own addresses configuration The OAR bits are set by software to select which destination logical addresses has to be considered in receive mode. Each bit, when set, enables the CEC logical address identified by the given bit position. At the end of HEADER reception, the received destination address is compared with the enabled addresses. In case of matching address, the incoming message is acknowledged and received. In case of non-matching address, the incoming message is received only in listen mode (LSTN=1), but without acknowledge sent. Broadcast messages are always received. Example: OAR = 0b000 0000 0010 0001 means that CEC acknowledges addresses 0x0 and 0x5. Consequently, each message directed to one of these addresses is received."]
    #[inline(always)]
    pub fn oar(&self) -> OAR_R {
        OAR_R::new(((self.bits >> 16) & 0x7fff) as u16)
    }
    #[doc = "Bit 31 - Listen mode LSTN bit is set and cleared by software."]
    #[inline(always)]
    pub fn lstn(&self) -> LSTN_R {
        LSTN_R::new(((self.bits >> 31) & 0x01) != 0)
    }
}
impl W {
    #[doc = "Bits 0:2 - Signal Free Time SFT bits are set by software. In the SFT=0x0 configuration the number of nominal data bit periods waited before transmission is ruled by hardware according to the transmission history. In all the other configurations the SFT number is determined by software. * 0x0 ** 2.5 Data-Bit periods if CEC is the last bus initiator with unsuccessful transmission (ARBLST=1, TXERR=1, TXUDR=1 or TXACKE= 1) ** 4 Data-Bit periods if CEC is the new bus initiator ** 6 Data-Bit periods if CEC is the last bus initiator with successful transmission (TXEOM=1) * 0x1: 0.5 nominal data bit periods * 0x2: 1.5 nominal data bit periods * 0x3: 2.5 nominal data bit periods * 0x4: 3.5 nominal data bit periods * 0x5: 4.5 nominal data bit periods * 0x6: 5.5 nominal data bit periods * 0x7: 6.5 nominal data bit periods"]
    #[inline(always)]
    pub fn sft(&mut self) -> SFT_W {
        SFT_W { w: self }
    }
    #[doc = "Bit 3 - Rx-Tolerance The RXTOL bit is set and cleared by software. ** Start-Bit, +/- 200 s rise, +/- 200 s fall. ** Data-Bit: +/- 200 s rise. +/- 350 s fall. ** Start-Bit: +/- 400 s rise, +/- 400 s fall ** Data-Bit: +/-300 s rise, +/- 500 s fall"]
    #[inline(always)]
    pub fn rxtol(&mut self) -> RXTOL_W {
        RXTOL_W { w: self }
    }
    #[doc = "Bit 4 - Rx-Stop on Bit Rising Error The BRESTP bit is set and cleared by software."]
    #[inline(always)]
    pub fn brestp(&mut self) -> BRESTP_W {
        BRESTP_W { w: self }
    }
    #[doc = "Bit 5 - Generate Error-Bit on Bit Rising Error The BREGEN bit is set and cleared by software. Note: If BRDNOGEN=0, an Error-bit is generated upon BRE detection with BRESTP=1 in broadcast even if BREGEN=0"]
    #[inline(always)]
    pub fn bregen(&mut self) -> BREGEN_W {
        BREGEN_W { w: self }
    }
    #[doc = "Bit 6 - Generate Error-Bit on Long Bit Period Error The LBPEGEN bit is set and cleared by software. Note: If BRDNOGEN=0, an Error-bit is generated upon LBPE detection in broadcast even if LBPEGEN=0"]
    #[inline(always)]
    pub fn lbpegen(&mut self) -> LBPEGEN_W {
        LBPEGEN_W { w: self }
    }
    #[doc = "Bit 7 - Avoid Error-Bit Generation in Broadcast The BRDNOGEN bit is set and cleared by software."]
    #[inline(always)]
    pub fn brdnogen(&mut self) -> BRDNOGEN_W {
        BRDNOGEN_W { w: self }
    }
    #[doc = "Bit 8 - SFT Option Bit The SFTOPT bit is set and cleared by software."]
    #[inline(always)]
    pub fn sftopt(&mut self) -> SFTOPT_W {
        SFTOPT_W { w: self }
    }
    #[doc = "Bits 16:30 - Own addresses configuration The OAR bits are set by software to select which destination logical addresses has to be considered in receive mode. Each bit, when set, enables the CEC logical address identified by the given bit position. At the end of HEADER reception, the received destination address is compared with the enabled addresses. In case of matching address, the incoming message is acknowledged and received. In case of non-matching address, the incoming message is received only in listen mode (LSTN=1), but without acknowledge sent. Broadcast messages are always received. Example: OAR = 0b000 0000 0010 0001 means that CEC acknowledges addresses 0x0 and 0x5. Consequently, each message directed to one of these addresses is received."]
    #[inline(always)]
    pub fn oar(&mut self) -> OAR_W {
        OAR_W { w: self }
    }
    #[doc = "Bit 31 - Listen mode LSTN bit is set and cleared by software."]
    #[inline(always)]
    pub fn lstn(&mut self) -> LSTN_W {
        LSTN_W { w: self }
    }
    #[doc = "Writes raw bits to the register."]
    #[inline(always)]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.0.bits(bits);
        self
    }
}
#[doc = "This register is used to configure the HDMI-CEC controller. It is mandatory to write CEC_CFGR only when CECEN=0.\n\nThis register you can [`read`](crate::generic::Reg::read), [`write_with_zero`](crate::generic::Reg::write_with_zero), [`reset`](crate::generic::Reg::reset), [`write`](crate::generic::Reg::write), [`modify`](crate::generic::Reg::modify). See [API](https://docs.rs/svd2rust/#read--modify--write-api).\n\nFor information about available fields see [cec_cfgr](index.html) module"]
pub struct CEC_CFGR_SPEC;
impl crate::RegisterSpec for CEC_CFGR_SPEC {
    type Ux = u32;
}
#[doc = "`read()` method returns [cec_cfgr::R](R) reader structure"]
impl crate::Readable for CEC_CFGR_SPEC {
    type Reader = R;
}
#[doc = "`write(|w| ..)` method takes [cec_cfgr::W](W) writer structure"]
impl crate::Writable for CEC_CFGR_SPEC {
    type Writer = W;
}
#[doc = "`reset()` method sets CEC_CFGR to value 0"]
impl crate::Resettable for CEC_CFGR_SPEC {
    #[inline(always)]
    fn reset_value() -> Self::Ux {
        0
    }
}