1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
//! Interface to the real time clock. See STM32F303 reference manual, section 27.
//! For more details, see
//! [ST AN4759](https:/www.st.com%2Fresource%2Fen%2Fapplication_note%2Fdm00226326-using-the-hardware-realtime-clock-rtc-and-the-tamper-management-unit-tamp-with-stm32-microcontrollers-stmicroelectronics.pdf&usg=AOvVaw3PzvL2TfYtwS32fw-Uv37h)

use crate::pac::rtc::{dr, tr};
use crate::pac::{PWR, RCC, RTC};
use crate::rcc::{Clocks, APB1};
use core::convert::TryInto;
use time::{Date, PrimitiveDateTime, Time};

/// Invalid input error
#[derive(Debug)]
pub enum Error {
    InvalidInputData,
}

pub const LSE_BITS: u8 = 0b01;

#[derive(Copy, Clone, PartialEq)]
pub enum RtcClock {
    /// LSE (Low-Speed External)
    ///
    /// This is in the Backup power domain, and so it can
    /// remain operational as long as VBat is present.
    Lse,
    /// LSI (Low-Speed Internal)
    ///
    /// This clock remains functional in Stop or Standby mode,
    /// but requires VDD to remain powered. LSI is an RC
    /// oscillator and has poor accuracy.
    Lsi,
    /// HSE (High-Speed External) divided by 2..=31
    ///
    /// The resulting clock must be lower than 1MHz. This clock is
    /// automatically disabled by hardware when the CPU enters Stop or
    /// standby mode.
    Hse { divider: u8 },
}

pub struct Rtc {
    pub regs: RTC,
}

impl Rtc {
    /// Create and enable a new RTC, and configure its clock source and prescalers.
    ///     
    /// ** Assumes 1970-01-01 00:00:00 Epoch **
    ///
    /// See AN4759 (Rev 7) Table 7 for configuration of `prediv_s` and `prediv_a`,
    /// respectively the formula to calculate `ck_spre` on the same page.
    ///
    /// For example, when using the LSE,
    /// set `prediv_s` to 255, and `prediv_a` to 127 to get a calendar clock of 1Hz.
    ///
    /// # Panics
    /// A panic is triggered in case the RTC returns invalid a date or time, for example, hours greater than 23.
    ///
    /// # Note
    /// This implementation assumes that the APB clock is greater than (>=) seven (7) times the RTC clock.
    /// This ensures a secure behavior of the synchronization mechanism.
    pub fn new(
        regs: RTC,
        prediv_s: u16,
        prediv_a: u8,
        clock_source: RtcClock,
        clocks: Clocks,
        apb1: &mut APB1,
        pwr: &mut PWR,
    ) -> Option<Self> {
        let mut result = Self { regs };
        let rcc = unsafe { &(*RCC::ptr()) };

        // Steps:
        // Enable PWR and DBP
        // Enable LSE (if needed)
        // Enable RTC Clock
        // Disable Write Protect
        // Enter Init
        // Configure 24 hour format
        // Set prescalers
        // Exit Init
        // Enable write protect

        // As per the sample code, unlock comes first. (Enable PWR and DBP)
        unlock(apb1, pwr);

        match clock_source {
            RtcClock::Lse => {
                // Check if LSE is enabled.
                clocks.lse()?;
                // Force a reset of the backup domain.
                rcc.bdcr.modify(|_, w| w.bdrst().enabled());
                rcc.bdcr.modify(|_, w| w.bdrst().disabled());
                // Set clock source to LSE.
                rcc.bdcr.modify(|_, w| w.rtcsel().lse());
            }
            RtcClock::Lsi => {
                // Check if LSI is enabled.
                clocks.lsi()?;
                // Force a reset of the backup domain.
                rcc.bdcr.modify(|_, w| w.bdrst().enabled());
                rcc.bdcr.modify(|_, w| w.bdrst().disabled());
                // Set clock source to LSI.
                rcc.bdcr.modify(|_, w| w.rtcsel().lsi());
            }
            RtcClock::Hse { divider } => {
                // Check if HSE is enabled.
                clocks.hse()?;
                // Set RTCPRE division factor (HES_RTC).
                rcc.cfgr.modify(|_, w| w.rtcpre().bits(divider));
                // Force a reset of the backup domain.
                rcc.bdcr.modify(|_, w| w.bdrst().enabled());
                rcc.bdcr.modify(|_, w| w.bdrst().disabled());
                // Set clock source to LSE.
                rcc.bdcr.modify(|_, w| w.rtcsel().hse());
            }
        }
        // Start the actual RTC.
        rcc.bdcr.modify(|_, w| w.rtcen().enabled());

        result.modify(|regs| {
            // Set 24 Hour
            regs.cr.modify(|_, w| w.fmt().clear_bit());
            // Set prescalers
            regs.prer.modify(|_, w| {
                w.prediv_s().bits(prediv_s);
                w.prediv_a().bits(prediv_a)
            })
        });

        Some(result)
    }

    /// As described in Section 27.3.7 in RM0316,
    /// this function is used to disable write protection
    /// when modifying an RTC register
    fn modify<F>(&mut self, mut closure: F)
    where
        F: FnMut(&mut RTC),
    {
        // Disable write protection
        self.regs.wpr.write(|w| unsafe { w.bits(0xCA) });
        self.regs.wpr.write(|w| unsafe { w.bits(0x53) });
        // Enter init mode
        let isr = self.regs.isr.read();
        if isr.initf().bit_is_clear() {
            self.regs.isr.modify(|_, w| w.init().set_bit());
            while self.regs.isr.read().initf().bit_is_clear() {}
        }
        // Invoke closure
        closure(&mut self.regs);
        // Exit init mode
        self.regs.isr.modify(|_, w| w.init().clear_bit());
        // wait for last write to be done
        while !self.regs.isr.read().initf().bit_is_clear() {}

        // Enable write protection
        self.regs.wpr.write(|w| unsafe { w.bits(0xFF) });
    }

    /// Set the time using time::Time.
    pub fn set_time(&mut self, time: &Time) -> Result<(), Error> {
        let (ht, hu) = bcd2_encode(time.hour().into())?;
        let (mnt, mnu) = bcd2_encode(time.minute().into())?;
        let (st, su) = bcd2_encode(time.second().into())?;
        self.modify(|regs| {
            regs.tr.write(|w| {
                w.ht().bits(ht);
                w.hu().bits(hu);
                w.mnt().bits(mnt);
                w.mnu().bits(mnu);
                w.st().bits(st);
                w.su().bits(su);
                w.pm().clear_bit()
            })
        });

        Ok(())
    }

    /// Set the seconds [0-59].
    pub fn set_seconds(&mut self, seconds: u8) -> Result<(), Error> {
        if seconds > 59 {
            return Err(Error::InvalidInputData);
        }
        let (st, su) = bcd2_encode(seconds.into())?;
        self.modify(|regs| regs.tr.modify(|_, w| w.st().bits(st).su().bits(su)));

        Ok(())
    }

    /// Set the minutes [0-59].
    pub fn set_minutes(&mut self, minutes: u8) -> Result<(), Error> {
        if minutes > 59 {
            return Err(Error::InvalidInputData);
        }
        let (mnt, mnu) = bcd2_encode(minutes.into())?;
        self.modify(|regs| regs.tr.modify(|_, w| w.mnt().bits(mnt).mnu().bits(mnu)));

        Ok(())
    }

    /// Set the hours [0-23].
    pub fn set_hours(&mut self, hours: u8) -> Result<(), Error> {
        if hours > 23 {
            return Err(Error::InvalidInputData);
        }
        let (ht, hu) = bcd2_encode(hours.into())?;

        self.modify(|regs| regs.tr.modify(|_, w| w.ht().bits(ht).hu().bits(hu)));

        Ok(())
    }

    /// Set the day of week [1-7].
    pub fn set_weekday(&mut self, weekday: u8) -> Result<(), Error> {
        if !(1..=7).contains(&weekday) {
            return Err(Error::InvalidInputData);
        }
        self.modify(|regs| regs.dr.modify(|_, w| unsafe { w.wdu().bits(weekday) }));

        Ok(())
    }

    /// Set the day of month [1-31].
    pub fn set_day(&mut self, day: u8) -> Result<(), Error> {
        if !(1..=31).contains(&day) {
            return Err(Error::InvalidInputData);
        }
        let (dt, du) = bcd2_encode(day as u32)?;
        self.modify(|regs| regs.dr.modify(|_, w| w.dt().bits(dt).du().bits(du)));

        Ok(())
    }

    /// Set the month [1-12].
    pub fn set_month(&mut self, month: u8) -> Result<(), Error> {
        if !(1..=12).contains(&month) {
            return Err(Error::InvalidInputData);
        }
        let (mt, mu) = bcd2_encode(month as u32)?;
        self.modify(|regs| regs.dr.modify(|_, w| w.mt().bit(mt > 0).mu().bits(mu)));

        Ok(())
    }

    /// Set the year [1970-2069].
    ///
    /// The year cannot be less than 1970, since the Unix epoch is assumed (1970-01-01 00:00:00).
    /// Also, the year cannot be greater than 2069 since the RTC range is 0 - 99.
    pub fn set_year(&mut self, year: u16) -> Result<(), Error> {
        if !(1970..=2069).contains(&year) {
            return Err(Error::InvalidInputData);
        }
        let (yt, yu) = bcd2_encode(year as u32 - 1970)?;
        self.modify(|regs| regs.dr.modify(|_, w| w.yt().bits(yt).yu().bits(yu)));

        Ok(())
    }

    /// Set the date.
    ///
    /// The year cannot be less than 1970, since the Unix epoch is assumed (1970-01-01 00:00:00).
    /// Also, the year cannot be greater than 2069 since the RTC range is 0 - 99.
    pub fn set_date(&mut self, date: &Date) -> Result<(), Error> {
        if !(1970..=2069).contains(&date.year()) {
            return Err(Error::InvalidInputData);
        }

        let (yt, yu) = bcd2_encode((date.year() - 1970) as u32)?;
        let (mt, mu) = bcd2_encode(u8::from(date.month()).into())?;
        let (dt, du) = bcd2_encode(date.day().into())?;

        self.modify(|regs| {
            regs.dr.write(|w| {
                w.dt().bits(dt);
                w.du().bits(du);
                w.mt().bit(mt > 0);
                w.mu().bits(mu);
                w.yt().bits(yt);
                w.yu().bits(yu)
            })
        });

        Ok(())
    }

    /// Set the date and time.
    ///
    /// The year cannot be less than 1970, since the Unix epoch is assumed (1970-01-01 00:00:00).
    /// Also, the year cannot be greater than 2069 since the RTC range is 0 - 99.
    pub fn set_datetime(&mut self, date: &PrimitiveDateTime) -> Result<(), Error> {
        if !(1970..=2069).contains(&date.year()) {
            return Err(Error::InvalidInputData);
        }

        let (yt, yu) = bcd2_encode((date.year() - 1970) as u32)?;
        let (mt, mu) = bcd2_encode(u8::from(date.month()).into())?;
        let (dt, du) = bcd2_encode(date.day().into())?;

        let (ht, hu) = bcd2_encode(date.hour().into())?;
        let (mnt, mnu) = bcd2_encode(date.minute().into())?;
        let (st, su) = bcd2_encode(date.second().into())?;

        self.modify(|regs| {
            regs.dr.write(|w| {
                w.dt().bits(dt);
                w.du().bits(du);
                w.mt().bit(mt > 0);
                w.mu().bits(mu);
                w.yt().bits(yt);
                w.yu().bits(yu)
            });
            regs.tr.write(|w| {
                w.ht().bits(ht);
                w.hu().bits(hu);
                w.mnt().bits(mnt);
                w.mnu().bits(mnu);
                w.st().bits(st);
                w.su().bits(su);
                w.pm().clear_bit()
            })
        });

        Ok(())
    }

    pub fn get_datetime(&mut self) -> PrimitiveDateTime {
        // Wait for Registers synchronization flag,  to ensure consistency between the RTC_SSR, RTC_TR and RTC_DR shadow registers.
        while self.regs.isr.read().rsf().bit_is_clear() {}

        // Reading either RTC_SSR or RTC_TR locks the values in the higher-order calendar shadow registers until RTC_DR is read.
        // So it is important to always read SSR, TR and then DR or TR and then DR.
        let tr = self.regs.tr.read();
        let dr = self.regs.dr.read();
        // In case the software makes read accesses to the calendar in a time interval smaller
        // than 2 RTCCLK periods: RSF must be cleared by software after the first calendar read.
        self.regs.isr.modify(|_, w| w.rsf().clear_bit());

        let seconds = decode_seconds(&tr);
        let minutes = decode_minutes(&tr);
        let hours = decode_hours(&tr);
        let day = decode_day(&dr);
        let month = decode_month(&dr);
        let year = decode_year(&dr);

        PrimitiveDateTime::new(
            Date::from_calendar_date(year.into(), month.try_into().unwrap(), day).unwrap(),
            Time::from_hms(hours, minutes, seconds).unwrap(),
        )
    }
}

// Two 32-bit registers (RTC_TR and RTC_DR) contain the seconds, minutes, hours (12- or 24-hour format), day (day
// of week), date (day of month), month, and year, expressed in binary coded decimal format
// (BCD). The sub-seconds value is also available in binary format.
//
// The following helper functions encode into BCD format from integer and
// decode to an integer from a BCD value respectively.
fn bcd2_encode(word: u32) -> Result<(u8, u8), Error> {
    let l = match (word / 10).try_into() {
        Ok(v) => v,
        Err(_) => {
            return Err(Error::InvalidInputData);
        }
    };
    let r = match (word % 10).try_into() {
        Ok(v) => v,
        Err(_) => {
            return Err(Error::InvalidInputData);
        }
    };

    Ok((l, r))
}

fn bcd2_decode(fst: u8, snd: u8) -> u32 {
    (fst * 10 + snd).into()
}

fn unlock(apb1: &mut APB1, pwr: &mut PWR) {
    apb1.enr().modify(|_, w| {
        w
            // Enable the backup interface by setting PWREN
            .pwren()
            .set_bit()
    });
    pwr.cr1.modify(|_, w| {
        w
            // Enable access to the backup registers
            .dbp()
            .set_bit()
    });
}

#[inline(always)]
fn decode_seconds(tr: &tr::R) -> u8 {
    bcd2_decode(tr.st().bits(), tr.su().bits()) as u8
}

#[inline(always)]
fn decode_minutes(tr: &tr::R) -> u8 {
    bcd2_decode(tr.mnt().bits(), tr.mnu().bits()) as u8
}

#[inline(always)]
fn decode_hours(tr: &tr::R) -> u8 {
    bcd2_decode(tr.ht().bits(), tr.hu().bits()) as u8
}

#[inline(always)]
fn decode_day(dr: &dr::R) -> u8 {
    bcd2_decode(dr.dt().bits(), dr.du().bits()) as u8
}

#[inline(always)]
fn decode_month(dr: &dr::R) -> u8 {
    let mt: u8 = if dr.mt().bit() { 1 } else { 0 };
    bcd2_decode(mt, dr.mu().bits()) as u8
}

#[inline(always)]
fn decode_year(dr: &dr::R) -> u16 {
    let year = bcd2_decode(dr.yt().bits(), dr.yu().bits()) + 1970; // 1970-01-01 is the epoch begin.
    year as u16
}