1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
use embedded_storage::nor_flash::{
    ErrorType, MultiwriteNorFlash, NorFlash, NorFlashError, NorFlashErrorKind, ReadNorFlash,
};

use crate::pac::FLASH;
use crate::signature::FlashSize;
use core::{ptr, slice};

/// Flash erase/program error
#[derive(Debug, Clone, Copy)]
pub enum Error {
    ProgrammingSequence,
    ProgrammingParallelism,
    ProgrammingAlignment,
    WriteProtection,
    Operation,
}

impl Error {
    fn read(flash: &FLASH) -> Option<Self> {
        let sr = flash.sr.read();
        if sr.pgserr().bit() {
            Some(Error::ProgrammingSequence)
        } else if sr.pgperr().bit() {
            Some(Error::ProgrammingParallelism)
        } else if sr.pgaerr().bit() {
            Some(Error::ProgrammingAlignment)
        } else if sr.wrperr().bit() {
            Some(Error::WriteProtection)
        } else if sr.operr().bit() {
            Some(Error::Operation)
        } else {
            None
        }
    }
}

/// Flash methods implemented for `pac::FLASH`
#[allow(clippy::len_without_is_empty)]
pub trait FlashExt {
    /// Memory-mapped address
    fn address(&self) -> usize;
    /// Size in bytes
    fn len(&self) -> usize;
    /// Returns a read-only view of flash memory
    fn read(&self) -> &[u8] {
        let ptr = self.address() as *const _;
        unsafe { slice::from_raw_parts(ptr, self.len()) }
    }
    /// Unlock flash for erasing/programming until this method's
    /// result is dropped
    fn unlocked(&mut self) -> UnlockedFlash;
    // Returns true if flash is in dual bank organization
    fn dual_bank(&self) -> bool;
    /// Returns flash memory sector of a given offset. Returns none if offset is out of range.
    fn sector(&self, offset: usize) -> Option<FlashSector>;
}

impl FlashExt for FLASH {
    fn address(&self) -> usize {
        0x0800_0000
    }

    fn len(&self) -> usize {
        FlashSize::get().bytes()
    }

    fn unlocked(&mut self) -> UnlockedFlash {
        unlock(self);
        UnlockedFlash { flash: self }
    }

    fn dual_bank(&self) -> bool {
        match self.len() / 1024 {
            // 1 MB devices depend on configuration
            1024 => {
                if cfg!(any(
                    feature = "stm32f427",
                    feature = "stm32f429",
                    feature = "stm32f437",
                    feature = "stm32f439",
                    feature = "stm32f469",
                    feature = "stm32f479",
                )) {
                    // DB1M bit is not present in all SVDs
                    // self.optcr.read().db1m().bit_is_set()
                    self.optcr.read().bits() & (1 << 30) != 0
                } else {
                    false
                }
            }
            // 2 MB devices are always dual bank
            2048 => true,
            // All other devices are single bank
            _ => false,
        }
    }

    fn sector(&self, offset: usize) -> Option<FlashSector> {
        flash_sectors(self.len(), self.dual_bank()).find(|s| s.contains(offset))
    }
}

const PSIZE_X8: u8 = 0b00;

/// Read-only flash
///
/// # Examples
///
/// ```
/// use stm32f4xx_hal::pac::Peripherals;
/// use stm32f4xx_hal::flash::LockedFlash;
/// use embedded_storage::nor_flash::ReadNorFlash;
///
/// let dp = Peripherals::take().unwrap();
/// let mut flash = LockedFlash::new(dp.FLASH);
/// println!("Flash capacity: {}", ReadNorFlash::capacity(&flash));
///
/// let mut buf = [0u8; 64];
/// ReadNorFlash::read(&mut flash, 0x0, &mut buf).unwrap();
/// println!("First 64 bytes of flash memory: {:?}", buf);
/// ```
pub struct LockedFlash {
    flash: FLASH,
}

impl LockedFlash {
    pub fn new(flash: FLASH) -> Self {
        Self { flash }
    }
}

impl FlashExt for LockedFlash {
    fn address(&self) -> usize {
        self.flash.address()
    }

    fn len(&self) -> usize {
        self.flash.len()
    }

    fn unlocked(&mut self) -> UnlockedFlash {
        self.flash.unlocked()
    }

    fn dual_bank(&self) -> bool {
        self.flash.dual_bank()
    }

    fn sector(&self, offset: usize) -> Option<FlashSector> {
        self.flash.sector(offset)
    }
}

/// Result of `FlashExt::unlocked()`
///
/// # Examples
///
/// ```
/// use stm32f4xx_hal::pac::Peripherals;
/// use stm32f4xx_hal::flash::{FlashExt, LockedFlash, UnlockedFlash};
/// use embedded_storage::nor_flash::NorFlash;
///
/// let dp = Peripherals::take().unwrap();
/// let mut flash = LockedFlash::new(dp.FLASH);
///
/// // Unlock flash for writing
/// let mut unlocked_flash = flash.unlocked();
///
/// // Erase the second 128 KB sector.
/// NorFlash::erase(&mut unlocked_flash, 128 * 1024, 256 * 1024).unwrap();
///
/// // Write some data at the start of the second 128 KB sector.
/// let buf = [0u8; 64];
/// NorFlash::write(&mut unlocked_flash, 128 * 1024, &buf).unwrap();
///
/// // Lock flash by dropping
/// drop(unlocked_flash);
/// ```
pub struct UnlockedFlash<'a> {
    flash: &'a mut FLASH,
}

/// Automatically lock flash erase/program when leaving scope
impl Drop for UnlockedFlash<'_> {
    fn drop(&mut self) {
        lock(self.flash);
    }
}

impl UnlockedFlash<'_> {
    /// Erase a flash sector
    ///
    /// Refer to the reference manual to see which sector corresponds
    /// to which memory address.
    pub fn erase(&mut self, sector: u8) -> Result<(), Error> {
        let snb = if sector < 12 { sector } else { sector + 4 };

        #[rustfmt::skip]
        self.flash.cr.modify(|_, w| unsafe {
            w
                // start
                .strt().set_bit()
                .psize().bits(PSIZE_X8)
                // sector number
                .snb().bits(snb)
                // sectore erase
                .ser().set_bit()
                // no programming
                .pg().clear_bit()
        });
        self.wait_ready();
        self.ok()
    }

    /// Program bytes with offset into flash memory,
    /// aligned to 128-bit rows
    pub fn program<'a, I>(&mut self, mut offset: usize, mut bytes: I) -> Result<(), Error>
    where
        I: Iterator<Item = &'a u8>,
    {
        let ptr = self.flash.address() as *mut u8;
        let mut bytes_written = 1;
        while bytes_written > 0 {
            bytes_written = 0;
            let amount = 16 - (offset % 16);

            #[rustfmt::skip]
            #[allow(unused_unsafe)]
            self.flash.cr.modify(|_, w| unsafe {
                w
                    .psize().bits(PSIZE_X8)
                    // no sector erase
                    .ser().clear_bit()
                    // programming
                    .pg().set_bit()
            });
            for _ in 0..amount {
                match bytes.next() {
                    Some(byte) => {
                        unsafe {
                            ptr::write_volatile(ptr.add(offset), *byte);
                        }
                        offset += 1;
                        bytes_written += 1;
                    }
                    None => break,
                }
            }
            self.wait_ready();
            self.ok()?;
        }
        self.flash.cr.modify(|_, w| w.pg().clear_bit());

        Ok(())
    }

    fn ok(&self) -> Result<(), Error> {
        Error::read(self.flash).map(Err).unwrap_or(Ok(()))
    }

    fn wait_ready(&self) {
        while self.flash.sr.read().bsy().bit() {}
    }
}

const UNLOCK_KEY1: u32 = 0x45670123;
const UNLOCK_KEY2: u32 = 0xCDEF89AB;

#[allow(unused_unsafe)]
fn unlock(flash: &FLASH) {
    flash.keyr.write(|w| unsafe { w.key().bits(UNLOCK_KEY1) });
    flash.keyr.write(|w| unsafe { w.key().bits(UNLOCK_KEY2) });
    assert!(!flash.cr.read().lock().bit())
}

fn lock(flash: &FLASH) {
    flash.cr.modify(|_, w| w.lock().set_bit());
}

/// Flash memory sector
pub struct FlashSector {
    /// Sector number
    pub number: u8,
    /// Offset from base memory address
    pub offset: usize,
    /// Sector size in bytes
    pub size: usize,
}

impl FlashSector {
    /// Returns true if given offset belongs to this sector
    pub fn contains(&self, offset: usize) -> bool {
        self.offset <= offset && offset < self.offset + self.size
    }
}

/// Iterator of flash memory sectors in a single bank.
/// Yields a size sequence of [16, 16, 16, 64, 128, 128, ..]
pub struct FlashSectorIterator {
    index: u8,
    start_sector: u8,
    start_offset: usize,
    end_offset: usize,
}

impl FlashSectorIterator {
    fn new(start_sector: u8, start_offset: usize, end_offset: usize) -> Self {
        Self {
            index: 0,
            start_sector,
            start_offset,
            end_offset,
        }
    }
}

impl Iterator for FlashSectorIterator {
    type Item = FlashSector;

    fn next(&mut self) -> Option<Self::Item> {
        if self.start_offset >= self.end_offset {
            None
        } else {
            // First 4 sectors are 16 KB, then one 64 KB and the rest are 128 KB
            let size = match self.index {
                0..=3 => 16 * 1024,
                4 => 64 * 1024,
                _ => 128 * 1024,
            };

            let sector = FlashSector {
                number: self.start_sector + self.index,
                offset: self.start_offset,
                size,
            };

            self.index += 1;
            self.start_offset += size;

            Some(sector)
        }
    }
}

/// Returns iterator of flash memory sectors for single and dual bank flash.
/// Sectors are returned in continuous memory order, while sector numbers can have spaces between banks.
pub fn flash_sectors(flash_size: usize, dual_bank: bool) -> impl Iterator<Item = FlashSector> {
    if dual_bank {
        // Second memory bank always starts from sector 12
        FlashSectorIterator::new(0, 0, flash_size / 2).chain(FlashSectorIterator::new(
            12,
            flash_size / 2,
            flash_size,
        ))
    } else {
        // Chain an empty iterator to match types
        FlashSectorIterator::new(0, 0, flash_size).chain(FlashSectorIterator::new(0, 0, 0))
    }
}

impl NorFlashError for Error {
    fn kind(&self) -> NorFlashErrorKind {
        match self {
            Error::ProgrammingAlignment => NorFlashErrorKind::NotAligned,
            _ => NorFlashErrorKind::Other,
        }
    }
}

impl ErrorType for LockedFlash {
    type Error = Error;
}

impl ErrorType for UnlockedFlash<'_> {
    type Error = Error;
}

impl ReadNorFlash for LockedFlash {
    const READ_SIZE: usize = 1;

    fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
        let offset = offset as usize;
        bytes.copy_from_slice(&self.flash.read()[offset..offset + bytes.len()]);
        Ok(())
    }

    fn capacity(&self) -> usize {
        self.flash.len()
    }
}

impl<'a> ReadNorFlash for UnlockedFlash<'a> {
    const READ_SIZE: usize = 1;

    fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
        let offset = offset as usize;
        bytes.copy_from_slice(&self.flash.read()[offset..offset + bytes.len()]);
        Ok(())
    }

    fn capacity(&self) -> usize {
        self.flash.len()
    }
}

impl<'a> NorFlash for UnlockedFlash<'a> {
    const WRITE_SIZE: usize = 1;

    // Use largest sector size of 128 KB. All smaller sectors will be erased together.
    const ERASE_SIZE: usize = 128 * 1024;

    fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
        let mut current = from as usize;

        for sector in flash_sectors(self.flash.len(), self.flash.dual_bank()) {
            if sector.contains(current) {
                UnlockedFlash::erase(self, sector.number)?;
                current += sector.size;
            }

            if current >= to as usize {
                break;
            }
        }

        Ok(())
    }

    fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
        self.program(offset as usize, bytes.iter())
    }
}

// STM32F4 supports multiple writes
impl<'a> MultiwriteNorFlash for UnlockedFlash<'a> {}