1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
//! Serial

use core::marker::PhantomData;
use core::ptr;

use hal::serial;
use nb;
use stm32f30x::{USART1, USART2, USART3};
use void::Void;

use gpio::gpioa::{PA10, PA2, PA3, PA9};
use gpio::gpiob::{PB10, PB11, PB6, PB7};
use gpio::gpioc::{PC10, PC11, PC4, PC5};
use gpio::gpiod::{PD5, PD6, PD8, PD9};
use gpio::gpioe::{PE0, PE1, PE15};
use gpio::AF7;
use rcc::{APB1, APB2, Clocks};
use time::Bps;

/// Interrupt event
pub enum Event {
    /// New data has been received
    Rxne,
    /// New data can be sent
    Txe,
}

/// Serial error
#[derive(Debug)]
pub enum Error {
    /// Framing error
    Framing,
    /// Noise error
    Noise,
    /// RX buffer overrun
    Overrun,
    /// Parity check error
    Parity,
    #[doc(hidden)]
    _Extensible,
}

// FIXME these should be "closed" traits
/// TX pin - DO NOT IMPLEMENT THIS TRAIT
pub unsafe trait TxPin<USART> {}

/// RX pin - DO NOT IMPLEMENT THIS TRAIT
pub unsafe trait RxPin<USART> {}

unsafe impl TxPin<USART1> for PA9<AF7> {}
unsafe impl TxPin<USART1> for PB6<AF7> {}
unsafe impl TxPin<USART1> for PC4<AF7> {}
unsafe impl TxPin<USART1> for PE0<AF7> {}

unsafe impl RxPin<USART1> for PA10<AF7> {}
unsafe impl RxPin<USART1> for PB7<AF7> {}
unsafe impl RxPin<USART1> for PC5<AF7> {}
unsafe impl RxPin<USART1> for PE1<AF7> {}

unsafe impl TxPin<USART2> for PA2<AF7> {}
// unsafe impl TxPin<USART2> for PA14<AF7> {}
// unsafe impl TxPin<USART2> for PB3<AF7> {}
unsafe impl TxPin<USART2> for PD5<AF7> {}

unsafe impl RxPin<USART2> for PA3<AF7> {}
// unsafe impl RxPin<USART2> for PA15<AF7> {}
// unsafe impl RxPin<USART2> for PB4<AF7> {}
unsafe impl RxPin<USART2> for PD6<AF7> {}

unsafe impl TxPin<USART3> for PB10<AF7> {}
unsafe impl TxPin<USART3> for PC10<AF7> {}
unsafe impl TxPin<USART3> for PD8<AF7> {}

unsafe impl RxPin<USART3> for PB11<AF7> {}
unsafe impl RxPin<USART3> for PC11<AF7> {}
unsafe impl RxPin<USART3> for PD9<AF7> {}
unsafe impl RxPin<USART3> for PE15<AF7> {}

/// Serial abstraction
pub struct Serial<USART, PINS> {
    usart: USART,
    pins: PINS,
}

/// Serial receiver
pub struct Rx<USART> {
    _usart: PhantomData<USART>,
}

/// Serial transmitter
pub struct Tx<USART> {
    _usart: PhantomData<USART>,
}

macro_rules! hal {
    ($(
        $USARTX:ident: ($usartX:ident, $APB:ident, $usartXen:ident, $usartXrst:ident, $pclkX:ident),
    )+) => {
        $(
            impl<TX, RX> Serial<$USARTX, (TX, RX)> {
                /// Configures a USART peripheral to provide serial communication
                pub fn $usartX(
                    usart: $USARTX,
                    pins: (TX, RX),
                    baud_rate: Bps,
                    clocks: Clocks,
                    apb: &mut $APB,
                ) -> Self
                where
                    TX: TxPin<$USARTX>,
                    RX: RxPin<$USARTX>,
                {
                    // enable or reset $USARTX
                    apb.enr().modify(|_, w| w.$usartXen().enabled());
                    apb.rstr().modify(|_, w| w.$usartXrst().set_bit());
                    apb.rstr().modify(|_, w| w.$usartXrst().clear_bit());

                    // disable hardware flow control
                    // TODO enable DMA
                    // usart.cr3.write(|w| w.rtse().clear_bit().ctse().clear_bit());

                    let brr = clocks.$pclkX().0 / baud_rate.0;
                    assert!(brr >= 16, "impossible baud rate");
                    usart.brr.write(|w| unsafe { w.bits(brr) });

                    // UE: enable USART
                    // RE: enable receiver
                    // TE: enable transceiver
                    usart
                        .cr1
                        .write(|w| w.ue().set_bit().re().set_bit().te().set_bit());

                    Serial { usart, pins }
                }

                /// Starts listening for an interrupt event
                pub fn listen(&mut self, event: Event) {
                    match event {
                        Event::Rxne => {
                            self.usart.cr1.modify(|_, w| w.rxneie().set_bit())
                        },
                        Event::Txe => {
                            self.usart.cr1.modify(|_, w| w.txeie().set_bit())
                        },
                    }
                }

                /// Starts listening for an interrupt event
                pub fn unlisten(&mut self, event: Event) {
                    match event {
                        Event::Rxne => {
                            self.usart.cr1.modify(|_, w| w.rxneie().clear_bit())
                        },
                        Event::Txe => {
                            self.usart.cr1.modify(|_, w| w.txeie().clear_bit())
                        },
                    }
                }

                /// Splits the `Serial` abstraction into a transmitter and a receiver half
                pub fn split(self) -> (Tx<$USARTX>, Rx<$USARTX>) {
                    (
                        Tx {
                            _usart: PhantomData,
                        },
                        Rx {
                            _usart: PhantomData,
                        },
                    )
                }

                /// Releases the USART peripheral and associated pins
                pub fn free(self) -> ($USARTX, (TX, RX)) {
                    (self.usart, self.pins)
                }
            }

            impl serial::Read<u8> for Rx<$USARTX> {
                type Error = Error;

                fn read(&mut self) -> nb::Result<u8, Error> {
                    // NOTE(unsafe) atomic read with no side effects
                    let isr = unsafe { (*$USARTX::ptr()).isr.read() };

                    Err(if isr.pe().bit_is_set() {
                        nb::Error::Other(Error::Parity)
                    } else if isr.fe().bit_is_set() {
                        nb::Error::Other(Error::Framing)
                    } else if isr.nf().bit_is_set() {
                        nb::Error::Other(Error::Noise)
                    } else if isr.ore().bit_is_set() {
                        nb::Error::Other(Error::Overrun)
                    } else if isr.rxne().bit_is_set() {
                        // NOTE(read_volatile) see `write_volatile` below
                        return Ok(unsafe {
                            ptr::read_volatile(&(*$USARTX::ptr()).rdr as *const _ as *const _)
                        });
                    } else {
                        nb::Error::WouldBlock
                    })
                }
            }

            impl serial::Write<u8> for Tx<$USARTX> {
                // NOTE(Void) See section "29.7 USART interrupts"; the only possible errors during
                // transmission are: clear to send (which is disabled in this case) errors and
                // framing errors (which only occur in SmartCard mode); neither of these apply to
                // our hardware configuration
                type Error = Void;

                fn flush(&mut self) -> nb::Result<(), Void> {
                    // NOTE(unsafe) atomic read with no side effects
                    let isr = unsafe { (*$USARTX::ptr()).isr.read() };

                    if isr.tc().bit_is_set() {
                        Ok(())
                    } else {
                        Err(nb::Error::WouldBlock)
                    }
                }

                fn write(&mut self, byte: u8) -> nb::Result<(), Void> {
                    // NOTE(unsafe) atomic read with no side effects
                    let isr = unsafe { (*$USARTX::ptr()).isr.read() };

                    if isr.txe().bit_is_set() {
                        // NOTE(unsafe) atomic write to stateless register
                        // NOTE(write_volatile) 8-bit write that's not possible through the svd2rust API
                        unsafe {
                            ptr::write_volatile(&(*$USARTX::ptr()).tdr as *const _ as *mut _, byte)
                        }
                        Ok(())
                    } else {
                        Err(nb::Error::WouldBlock)
                    }
                }
            }
        )+
    }
}

hal! {
    USART1: (usart1, APB2, usart1en, usart1rst, pclk2),
    USART2: (usart2, APB1, usart2en, usart2rst, pclk1),
    USART3: (usart3, APB1, usart3en, usart3rst, pclk1),
}