1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
/*!
  # Pulse width modulation

  The general purpose timers (`TIM2`, `TIM3`, and `TIM4`) can be used to output
  pulse width modulated signals on some pins. The timers support up to 4
  simultaneous pwm outputs in separate `Channels`

  ## Usage for pre-defined channel combinations

  This crate only defines basic channel combinations for default AFIO remappings,
  where all the channels are enabled. Start by setting all the pins for the
  timer you want to use to alternate push pull pins:

  ```rust
  let gpioa = ..; // Set up and split GPIOA
  // Select the pins you want to use
  let pins = (
      gpioa.pa0.into_alternate_push_pull(&mut gpioa.crl),
      gpioa.pa1.into_alternate_push_pull(&mut gpioa.crl),
      gpioa.pa2.into_alternate_push_pull(&mut gpioa.crl),
      gpioa.pa3.into_alternate_push_pull(&mut gpioa.crl),
  );

  // Set up the timer as a PWM output. If selected pins may correspond to different remap options,
  // then you must specify the remap generic parameter. Otherwise, if there is no such ambiguity,
  // the remap generic parameter can be omitted without complains from the compiler.
  let (c1, c2, c3, c4) = Timer::tim2(p.TIM2, &clocks, &mut rcc.apb1)
      .pwm::<Tim2NoRemap, _, _, _>(pins, &mut afio.mapr, 1.khz())
      .3;

  // Start using the channels
  c1.set_duty(c1.get_max_duty());
  // ...
  ```

  Then call the `pwm` function on the corresponding timer.

  NOTE: In some cases you need to specify remap you need, especially for TIM2
  (see [Alternate function remapping](super::timer)):

  ```
    let device: pac::Peripherals = ..;

    // Put the timer in PWM mode using the specified pins
    // with a frequency of 100 hz.
    let (c0, c1, c2, c3) = Timer::tim2(device.TIM2, &clocks, &mut rcc.apb1)
        .pwm::<Tim2NoRemap, _, _, _>(pins, &mut afio.mapr, 100.hz());

    // Set the duty cycle of channel 0 to 50%
    c0.set_duty(c0.get_max_duty() / 2);
    // PWM outputs are disabled by default
    c0.enable()
  ```
*/

use core::marker::Copy;
use core::marker::PhantomData;
use core::mem;

use crate::hal;
#[cfg(any(feature = "stm32f100", feature = "stm32f103", feature = "connectivity",))]
use crate::pac::TIM1;
#[cfg(feature = "medium")]
use crate::pac::TIM4;
use crate::pac::{TIM2, TIM3};
use cast::{u16, u32};

use crate::afio::MAPR;
use crate::bb;
use crate::gpio::{self, Alternate, PushPull};
use crate::time::Hertz;
use crate::time::U32Ext;
use crate::timer::Timer;

pub trait Pins<REMAP, P> {
    const C1: bool = false;
    const C2: bool = false;
    const C3: bool = false;
    const C4: bool = false;
    type Channels;

    fn check_used(c: Channel) -> Channel {
        if (c == Channel::C1 && Self::C1)
            || (c == Channel::C2 && Self::C2)
            || (c == Channel::C3 && Self::C3)
            || (c == Channel::C4 && Self::C4)
        {
            c
        } else {
            panic!("Unused channel")
        }
    }
}

#[derive(Clone, Copy, PartialEq)]
pub enum Channel {
    C1,
    C2,
    C3,
    C4,
}

use crate::timer::sealed::{Ch1, Ch2, Ch3, Ch4, Remap};
macro_rules! pins_impl {
    ( $( ( $($PINX:ident),+ ), ( $($TRAIT:ident),+ ), ( $($ENCHX:ident),* ); )+ ) => {
        $(
            #[allow(unused_parens)]
            impl<TIM, REMAP, $($PINX,)+> Pins<REMAP, ($($ENCHX),+)> for ($($PINX),+)
            where
                REMAP: Remap<Periph = TIM>,
                $($PINX: $TRAIT<REMAP> + gpio::Mode<Alternate<PushPull>>,)+
            {
                $(const $ENCHX: bool = true;)+
                type Channels = ($(PwmChannel<TIM, $ENCHX>),+);
            }
        )+
    };
}

pins_impl!(
    (P1, P2, P3, P4), (Ch1, Ch2, Ch3, Ch4), (C1, C2, C3, C4);
    (P2, P3, P4), (Ch2, Ch3, Ch4), (C2, C3, C4);
    (P1, P3, P4), (Ch1, Ch3, Ch4), (C1, C3, C4);
    (P1, P2, P4), (Ch1, Ch2, Ch4), (C1, C2, C4);
    (P1, P2, P3), (Ch1, Ch2, Ch3), (C1, C2, C3);
    (P3, P4), (Ch3, Ch4), (C3, C4);
    (P2, P4), (Ch2, Ch4), (C2, C4);
    (P2, P3), (Ch2, Ch3), (C2, C3);
    (P1, P4), (Ch1, Ch4), (C1, C4);
    (P1, P3), (Ch1, Ch3), (C1, C3);
    (P1, P2), (Ch1, Ch2), (C1, C2);
    (P1), (Ch1), (C1);
    (P2), (Ch2), (C2);
    (P3), (Ch3), (C3);
    (P4), (Ch4), (C4);
);

#[cfg(any(feature = "stm32f100", feature = "stm32f103", feature = "connectivity",))]
impl Timer<TIM1> {
    pub fn pwm<REMAP, P, PINS, T>(
        self,
        _pins: PINS,
        mapr: &mut MAPR,
        freq: T,
    ) -> Pwm<TIM1, REMAP, P, PINS>
    where
        REMAP: Remap<Periph = TIM1>,
        PINS: Pins<REMAP, P>,
        T: Into<Hertz>,
    {
        mapr.modify_mapr(|_, w| unsafe { w.tim1_remap().bits(REMAP::REMAP) });

        // TIM1 has a break function that deactivates the outputs, this bit automatically activates
        // the output when no break input is present
        self.tim.bdtr.modify(|_, w| w.aoe().set_bit());

        let Self { tim, clk } = self;
        tim1(tim, _pins, freq.into(), clk)
    }
}

impl Timer<TIM2> {
    pub fn pwm<REMAP, P, PINS, T>(
        self,
        _pins: PINS,
        mapr: &mut MAPR,
        freq: T,
    ) -> Pwm<TIM2, REMAP, P, PINS>
    where
        REMAP: Remap<Periph = TIM2>,
        PINS: Pins<REMAP, P>,
        T: Into<Hertz>,
    {
        mapr.modify_mapr(|_, w| unsafe { w.tim2_remap().bits(REMAP::REMAP) });

        let Self { tim, clk } = self;
        tim2(tim, _pins, freq.into(), clk)
    }
}

impl Timer<TIM3> {
    pub fn pwm<REMAP, P, PINS, T>(
        self,
        _pins: PINS,
        mapr: &mut MAPR,
        freq: T,
    ) -> Pwm<TIM3, REMAP, P, PINS>
    where
        REMAP: Remap<Periph = TIM3>,
        PINS: Pins<REMAP, P>,
        T: Into<Hertz>,
    {
        mapr.modify_mapr(|_, w| unsafe { w.tim3_remap().bits(REMAP::REMAP) });

        let Self { tim, clk } = self;
        tim3(tim, _pins, freq.into(), clk)
    }
}

#[cfg(feature = "medium")]
impl Timer<TIM4> {
    pub fn pwm<REMAP, P, PINS, T>(
        self,
        _pins: PINS,
        mapr: &mut MAPR,
        freq: T,
    ) -> Pwm<TIM4, REMAP, P, PINS>
    where
        REMAP: Remap<Periph = TIM4>,
        PINS: Pins<REMAP, P>,
        T: Into<Hertz>,
    {
        mapr.modify_mapr(|_, w| w.tim4_remap().bit(REMAP::REMAP == 1));

        let Self { tim, clk } = self;
        tim4(tim, _pins, freq.into(), clk)
    }
}

pub struct Pwm<TIM, REMAP, P, PINS>
where
    REMAP: Remap<Periph = TIM>,
    PINS: Pins<REMAP, P>,
{
    clk: Hertz,
    _pins: PhantomData<(TIM, REMAP, P, PINS)>,
}

impl<TIM, REMAP, P, PINS> Pwm<TIM, REMAP, P, PINS>
where
    REMAP: Remap<Periph = TIM>,
    PINS: Pins<REMAP, P>,
{
    pub fn split(self) -> PINS::Channels {
        unsafe { mem::MaybeUninit::uninit().assume_init() }
    }
}

pub struct PwmChannel<TIM, CHANNEL> {
    _channel: PhantomData<CHANNEL>,
    _tim: PhantomData<TIM>,
}

pub struct C1;
pub struct C2;
pub struct C3;
pub struct C4;

macro_rules! hal {
    ($($TIMX:ident: ($timX:ident),)+) => {
        $(
            fn $timX<REMAP, P, PINS>(
                tim: $TIMX,
                _pins: PINS,
                freq: Hertz,
                clk: Hertz,
            ) -> Pwm<$TIMX, REMAP, P, PINS>
            where
                REMAP: Remap<Periph = $TIMX>,
                PINS: Pins<REMAP, P>,
            {
                if PINS::C1 {
                    tim.ccmr1_output()
                        .modify(|_, w| w.oc1pe().set_bit().oc1m().pwm_mode1() );
                }

                if PINS::C2 {
                    tim.ccmr1_output()
                        .modify(|_, w| w.oc2pe().set_bit().oc2m().pwm_mode1() );
                }

                if PINS::C3 {
                    tim.ccmr2_output()
                        .modify(|_, w| w.oc3pe().set_bit().oc3m().pwm_mode1() );
                }

                if PINS::C4 {
                    tim.ccmr2_output()
                        .modify(|_, w| w.oc4pe().set_bit().oc4m().pwm_mode1() );
                }
                let ticks = clk.0 / freq.0;
                let psc = u16(ticks / (1 << 16)).unwrap();
                tim.psc.write(|w| w.psc().bits(psc) );
                let arr = u16(ticks / u32(psc + 1)).unwrap();
                tim.arr.write(|w| w.arr().bits(arr));

                // The psc register is buffered, so we trigger an update event to update it
                // Sets the URS bit to prevent an interrupt from being triggered by the UG bit
                tim.cr1.modify(|_, w| w.urs().set_bit());
                tim.egr.write(|w| w.ug().set_bit());
                tim.cr1.modify(|_, w| w.urs().clear_bit());

                tim.cr1.write(|w|
                    w.cms()
                        .bits(0b00)
                        .dir()
                        .clear_bit()
                        .opm()
                        .clear_bit()
                        .cen()
                        .set_bit()
                );

                Pwm {
                    clk: clk,
                    _pins: PhantomData
                }
            }

        /*
        The following implemention of the embedded_hal::Pwm uses Hertz as a time type.  This was choosen
        because of the timescales of operations being on the order of nanoseconds and not being able to
        efficently represent a float on the hardware.  It might be possible to change the time type to
        a different time based using such as the nanosecond.  The issue with doing so is that the max
        delay would then be at just a little over 2 seconds because of the 32 bit depth of the number.
        Using milliseconds is also an option, however, using this as a base unit means that only there
        could be resolution issues when trying to get a specific value, because of the integer nature.

        To find a middle ground, the Hertz type is used as a base here and the Into trait has been
        defined for several base time units.  This will allow for calling the set_period method with
        something that is natural to both the MCU and the end user.
        */
        impl<REMAP, P, PINS> hal::Pwm for Pwm<$TIMX, REMAP, P, PINS> where
            REMAP: Remap<Periph = $TIMX>,
            PINS: Pins<REMAP, P>,
            {
                type Channel = Channel;
                type Duty = u16;
                type Time = Hertz;

                fn enable(&mut self, channel: Self::Channel) {
                    match PINS::check_used(channel) {
                        Channel::C1 => unsafe { bb::set(&(*$TIMX::ptr()).ccer, 0) },
                        Channel::C2 => unsafe { bb::set(&(*$TIMX::ptr()).ccer, 4) },
                        Channel::C3 => unsafe { bb::set(&(*$TIMX::ptr()).ccer, 8) },
                        Channel::C4 => unsafe { bb::set(&(*$TIMX::ptr()).ccer, 12) }
                    }
                }

                fn disable(&mut self, channel: Self::Channel) {
                    match PINS::check_used(channel) {
                        Channel::C1 => unsafe { bb::clear(&(*$TIMX::ptr()).ccer, 0) },
                        Channel::C2 => unsafe { bb::clear(&(*$TIMX::ptr()).ccer, 4) },
                        Channel::C3 => unsafe { bb::clear(&(*$TIMX::ptr()).ccer, 8) },
                        Channel::C4 => unsafe { bb::clear(&(*$TIMX::ptr()).ccer, 12) },
                    }
                }

                fn get_duty(&self, channel: Self::Channel) -> Self::Duty {
                    match PINS::check_used(channel) {
                        Channel::C1 => unsafe { (*$TIMX::ptr()).ccr1.read().ccr().bits() },
                        Channel::C2 => unsafe { (*$TIMX::ptr()).ccr2.read().ccr().bits() },
                        Channel::C3 => unsafe { (*$TIMX::ptr()).ccr3.read().ccr().bits() },
                        Channel::C4 => unsafe { (*$TIMX::ptr()).ccr4.read().ccr().bits() },
                    }
                }

                fn set_duty(&mut self, channel: Self::Channel, duty: Self::Duty) {
                    match PINS::check_used(channel) {
                        Channel::C1 => unsafe { (*$TIMX::ptr()).ccr1.write(|w| w.ccr().bits(duty)) },
                        Channel::C2 => unsafe { (*$TIMX::ptr()).ccr2.write(|w| w.ccr().bits(duty)) },
                        Channel::C3 => unsafe { (*$TIMX::ptr()).ccr3.write(|w| w.ccr().bits(duty)) },
                        Channel::C4 => unsafe { (*$TIMX::ptr()).ccr4.write(|w| w.ccr().bits(duty)) },
                    }
                }

                fn get_max_duty(&self) -> Self::Duty {
                    unsafe { (*$TIMX::ptr()).arr.read().arr().bits() }
                }

                fn get_period(&self) -> Self::Time {
                    let clk = self.clk;
                    let psc: u16 = unsafe{(*$TIMX::ptr()).psc.read().psc().bits()};
                    let arr: u16 = unsafe{(*$TIMX::ptr()).arr.read().arr().bits()};

                    // Length in ms of an internal clock pulse
                    (clk.0 / u32(psc * arr)).hz()
                }

                fn set_period<T>(&mut self, period: T) where
                    T: Into<Self::Time> {
                        let clk = self.clk;

                        let ticks = clk.0 / period.into().0;
                        let psc = u16(ticks / (1 << 16)).unwrap();
                        let arr = u16(ticks / u32(psc + 1)).unwrap();
                        unsafe {
                            (*$TIMX::ptr()).psc.write(|w| w.psc().bits(psc));
                            (*$TIMX::ptr()).arr.write(|w| w.arr().bits(arr));
                        }
                }
            }

            impl hal::PwmPin for PwmChannel<$TIMX, C1> {
                type Duty = u16;

                fn disable(&mut self) {
                    unsafe { bb::clear(&(*$TIMX::ptr()).ccer, 0) }
                }

                fn enable(&mut self) {
                    unsafe { bb::set(&(*$TIMX::ptr()).ccer, 0) }
                }

                fn get_duty(&self) -> u16 {
                    unsafe { (*$TIMX::ptr()).ccr1.read().ccr().bits() }
                }

                fn get_max_duty(&self) -> u16 {
                    unsafe { (*$TIMX::ptr()).arr.read().arr().bits() }
                }

                fn set_duty(&mut self, duty: u16) {
                    unsafe { (*$TIMX::ptr()).ccr1.write(|w| w.ccr().bits(duty)) }
                }
            }

            impl hal::PwmPin for PwmChannel<$TIMX, C2> {
                type Duty = u16;

                fn disable(&mut self) {
                    unsafe { bb::clear(&(*$TIMX::ptr()).ccer, 4) }
                }

                fn enable(&mut self) {
                    unsafe { bb::set(&(*$TIMX::ptr()).ccer, 4) }
                }

                fn get_duty(&self) -> u16 {
                    unsafe { (*$TIMX::ptr()).ccr2.read().ccr().bits() }
                }

                fn get_max_duty(&self) -> u16 {
                    unsafe { (*$TIMX::ptr()).arr.read().arr().bits() }
                }

                fn set_duty(&mut self, duty: u16) {
                    unsafe { (*$TIMX::ptr()).ccr2.write(|w| w.ccr().bits(duty)) }
                }
            }

            impl hal::PwmPin for PwmChannel<$TIMX, C3> {
                type Duty = u16;

                fn disable(&mut self) {
                    unsafe { bb::clear(&(*$TIMX::ptr()).ccer, 8) }
                }

                fn enable(&mut self) {
                    unsafe { bb::set(&(*$TIMX::ptr()).ccer, 8) }
                }

                fn get_duty(&self) -> u16 {
                    unsafe { (*$TIMX::ptr()).ccr3.read().ccr().bits() }
                }

                fn get_max_duty(&self) -> u16 {
                    unsafe { (*$TIMX::ptr()).arr.read().arr().bits() }
                }

                fn set_duty(&mut self, duty: u16) {
                    unsafe { (*$TIMX::ptr()).ccr3.write(|w| w.ccr().bits(duty)) }
                }
            }

            impl hal::PwmPin for PwmChannel<$TIMX, C4> {
                type Duty = u16;

                fn disable(&mut self) {
                    unsafe { bb::clear(&(*$TIMX::ptr()).ccer, 12) }
                }

                fn enable(&mut self) {
                    unsafe { bb::set(&(*$TIMX::ptr()).ccer, 12) }
                }

                fn get_duty(&self) -> u16 {
                    unsafe { (*$TIMX::ptr()).ccr4.read().ccr().bits() }
                }

                fn get_max_duty(&self) -> u16 {
                    unsafe { (*$TIMX::ptr()).arr.read().arr().bits() }
                }

                fn set_duty(&mut self, duty: u16) {
                    unsafe { (*$TIMX::ptr()).ccr4.write(|w| w.ccr().bits(duty)) }
                }
            }
        )+
    }
}

#[cfg(any(feature = "stm32f100", feature = "stm32f103", feature = "connectivity",))]
hal! {
    TIM1: (tim1),
}

hal! {
    TIM2: (tim2),
    TIM3: (tim3),
}

#[cfg(feature = "medium")]
hal! {
    TIM4: (tim4),
}