1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
//! # Serial Communication (USART)
//!
//! This module contains the functions to utilize the USART (Universal
//! synchronous asynchronous receiver transmitter)
//!
//! ## Example usage:
//!
//!  ```rust
//! // prelude: create handles to the peripherals and registers
//! let p = crate::pac::Peripherals::take().unwrap();
//! let cp = cortex_m::Peripherals::take().unwrap();
//! let mut flash = p.FLASH.constrain();
//! let mut rcc = p.RCC.constrain();
//! let clocks = rcc.cfgr.freeze(&mut flash.acr);
//! let mut afio = p.AFIO.constrain(&mut rcc.apb2);
//! let mut gpioa = p.GPIOA.split(&mut rcc.apb2);
//!
//! // USART1 on Pins A9 and A10
//! let pin_tx = gpioa.pa9.into_alternate_push_pull(&mut gpioa.crh);
//! let pin_rx = gpioa.pa10;
//! // Create an interface struct for USART1 with 9600 Baud
//! let serial = Serial::usart1(
//!     p.USART1,
//!     (pin_tx, pin_rx),
//!     &mut afio.mapr,
//!     Config::default().baudrate(9_600.bps()),
//!     clocks,
//!     &mut rcc.apb2,
//! );
//!
//! // separate into tx and rx channels
//! let (mut tx, mut rx) = serial.split();
//!
//! // Write 'R' to the USART
//! block!(tx.write(b'R')).ok();
//! // Receive a byte from the USART and store it in "received"
//! let received = block!(rx.read()).unwrap();
//!  ```

use core::marker::PhantomData;
use core::ops::Deref;
use core::ptr;
use core::sync::atomic::{self, Ordering};

use crate::pac::{USART1, USART2, USART3};
use core::convert::Infallible;
use embedded_hal::serial::Write;

use crate::afio::MAPR;
use crate::dma::{dma1, CircBuffer, RxDma, Static, Transfer, TxDma, R, W};
use crate::gpio::gpioa::{PA10, PA2, PA3, PA9};
use crate::gpio::gpiob::{PB10, PB11, PB6, PB7};
use crate::gpio::gpioc::{PC10, PC11};
use crate::gpio::gpiod::{PD5, PD6, PD8, PD9};
use crate::gpio::{Alternate, Floating, Input, PushPull};
use crate::rcc::{sealed::RccBus, Clocks, Enable, GetBusFreq, Reset};
use crate::time::{Bps, U32Ext};

/// Interrupt event
pub enum Event {
    /// New data has been received
    Rxne,
    /// New data can be sent
    Txe,
}

/// Serial error
#[derive(Debug)]
pub enum Error {
    /// Framing error
    Framing,
    /// Noise error
    Noise,
    /// RX buffer overrun
    Overrun,
    /// Parity check error
    Parity,
    #[doc(hidden)]
    _Extensible,
}

// USART REMAPPING, see: https://www.st.com/content/ccc/resource/technical/document/reference_manual/59/b9/ba/7f/11/af/43/d5/CD00171190.pdf/files/CD00171190.pdf/jcr:content/translations/en.CD00171190.pdf
// Section 9.3.8
pub trait Pins<USART> {
    const REMAP: u8;
}

impl Pins<USART1> for (PA9<Alternate<PushPull>>, PA10<Input<Floating>>) {
    const REMAP: u8 = 0;
}

impl Pins<USART1> for (PB6<Alternate<PushPull>>, PB7<Input<Floating>>) {
    const REMAP: u8 = 1;
}

impl Pins<USART2> for (PA2<Alternate<PushPull>>, PA3<Input<Floating>>) {
    const REMAP: u8 = 0;
}

impl Pins<USART2> for (PD5<Alternate<PushPull>>, PD6<Input<Floating>>) {
    const REMAP: u8 = 0;
}

impl Pins<USART3> for (PB10<Alternate<PushPull>>, PB11<Input<Floating>>) {
    const REMAP: u8 = 0;
}

impl Pins<USART3> for (PC10<Alternate<PushPull>>, PC11<Input<Floating>>) {
    const REMAP: u8 = 1;
}

impl Pins<USART3> for (PD8<Alternate<PushPull>>, PD9<Input<Floating>>) {
    const REMAP: u8 = 0b11;
}

pub enum Parity {
    ParityNone,
    ParityEven,
    ParityOdd,
}

pub enum StopBits {
    #[doc = "1 stop bit"]
    STOP1,
    #[doc = "0.5 stop bits"]
    STOP0P5,
    #[doc = "2 stop bits"]
    STOP2,
    #[doc = "1.5 stop bits"]
    STOP1P5,
}

pub struct Config {
    pub baudrate: Bps,
    pub parity: Parity,
    pub stopbits: StopBits,
}

impl Config {
    pub fn baudrate(mut self, baudrate: Bps) -> Self {
        self.baudrate = baudrate;
        self
    }

    pub fn parity_none(mut self) -> Self {
        self.parity = Parity::ParityNone;
        self
    }

    pub fn parity_even(mut self) -> Self {
        self.parity = Parity::ParityEven;
        self
    }

    pub fn parity_odd(mut self) -> Self {
        self.parity = Parity::ParityOdd;
        self
    }

    pub fn stopbits(mut self, stopbits: StopBits) -> Self {
        self.stopbits = stopbits;
        self
    }
}

impl Default for Config {
    fn default() -> Config {
        let baudrate = 115_200_u32.bps();
        Config {
            baudrate,
            parity: Parity::ParityNone,
            stopbits: StopBits::STOP1,
        }
    }
}

/// Serial abstraction
pub struct Serial<USART, PINS> {
    usart: USART,
    pins: PINS,
}

/// Serial receiver
pub struct Rx<USART> {
    _usart: PhantomData<USART>,
}

/// Serial transmitter
pub struct Tx<USART> {
    _usart: PhantomData<USART>,
}

/// Internal trait for the serial read / write logic.
trait UsartReadWrite: Deref<Target = crate::pac::usart1::RegisterBlock> {
    fn read(&self) -> nb::Result<u8, Error> {
        let sr = self.sr.read();

        // Check for any errors
        let err = if sr.pe().bit_is_set() {
            Some(Error::Parity)
        } else if sr.fe().bit_is_set() {
            Some(Error::Framing)
        } else if sr.ne().bit_is_set() {
            Some(Error::Noise)
        } else if sr.ore().bit_is_set() {
            Some(Error::Overrun)
        } else {
            None
        };

        if let Some(err) = err {
            // Some error occurred. In order to clear that error flag, you have to
            // do a read from the sr register followed by a read from the dr
            // register
            // NOTE(read_volatile) see `write_volatile` below
            unsafe {
                ptr::read_volatile(&self.sr as *const _ as *const _);
                ptr::read_volatile(&self.dr as *const _ as *const _);
            }
            Err(nb::Error::Other(err))
        } else {
            // Check if a byte is available
            if sr.rxne().bit_is_set() {
                // Read the received byte
                // NOTE(read_volatile) see `write_volatile` below
                Ok(unsafe { ptr::read_volatile(&self.dr as *const _ as *const _) })
            } else {
                Err(nb::Error::WouldBlock)
            }
        }
    }

    fn write(&self, byte: u8) -> nb::Result<(), Infallible> {
        let sr = self.sr.read();

        if sr.txe().bit_is_set() {
            // NOTE(unsafe) atomic write to stateless register
            // NOTE(write_volatile) 8-bit write that's not possible through the svd2rust API
            unsafe { ptr::write_volatile(&self.dr as *const _ as *mut _, byte) }
            Ok(())
        } else {
            Err(nb::Error::WouldBlock)
        }
    }

    fn flush(&self) -> nb::Result<(), Infallible> {
        let sr = self.sr.read();

        if sr.tc().bit_is_set() {
            Ok(())
        } else {
            Err(nb::Error::WouldBlock)
        }
    }
}
impl UsartReadWrite for &crate::pac::usart1::RegisterBlock {}

macro_rules! hal {
    ($(
        $(#[$meta:meta])*
        $USARTX:ident: (
            $usartX:ident,
            $usartX_remap:ident,
            $bit:ident,
            $closure:expr,
        ),
    )+) => {
        $(
            $(#[$meta])*
            /// The behaviour of the functions is equal for all three USARTs.
            /// Except that they are using the corresponding USART hardware and pins.
            impl<PINS> Serial<$USARTX, PINS> {

                /// Configures the serial interface and creates the interface
                /// struct.
                ///
                /// `Bps` is the baud rate of the interface.
                ///
                /// `Clocks` passes information about the current frequencies of
                /// the clocks.  The existence of the struct ensures that the
                /// clock settings are fixed.
                ///
                /// The `serial` struct takes ownership over the `USARTX` device
                /// registers and the specified `PINS`
                ///
                /// `MAPR` and `APBX` are register handles which are passed for
                /// configuration. (`MAPR` is used to map the USART to the
                /// corresponding pins. `APBX` is used to reset the USART.)
                pub fn $usartX(
                    usart: $USARTX,
                    pins: PINS,
                    mapr: &mut MAPR,
                    config: Config,
                    clocks: Clocks,
                    apb: &mut <$USARTX as RccBus>::Bus,
                ) -> Self
                where
                    PINS: Pins<$USARTX>,
                {
                    // enable and reset $USARTX
                    $USARTX::enable(apb);
                    $USARTX::reset(apb);

                    #[allow(unused_unsafe)]
                    mapr.modify_mapr(|_, w| unsafe{
                            w.$usartX_remap().$bit(($closure)(PINS::REMAP))
                        });

                    // enable DMA transfers
                    usart.cr3.write(|w| w.dmat().set_bit().dmar().set_bit());

                    // Configure baud rate
                    let brr = <$USARTX as RccBus>::Bus::get_frequency(&clocks).0 / config.baudrate.0;
                    assert!(brr >= 16, "impossible baud rate");
                    usart.brr.write(|w| unsafe { w.bits(brr) });

                    // Configure parity and word length
                    // Unlike most uart devices, the "word length" of this usart device refers to
                    // the size of the data plus the parity bit. I.e. "word length"=8, parity=even
                    // results in 7 bits of data. Therefore, in order to get 8 bits and one parity
                    // bit, we need to set the "word" length to 9 when using parity bits.
                    let (word_length, parity_control_enable, parity) = match config.parity {
                        Parity::ParityNone => (false, false, false),
                        Parity::ParityEven => (true, true, false),
                        Parity::ParityOdd => (true, true, true),
                    };
                    usart.cr1.modify(|_r, w| {
                        w
                            .m().bit(word_length)
                            .ps().bit(parity)
                            .pce().bit(parity_control_enable)
                    });

                    // Configure stop bits
                    let stop_bits = match config.stopbits {
                        StopBits::STOP1 => 0b00,
                        StopBits::STOP0P5 => 0b01,
                        StopBits::STOP2 => 0b10,
                        StopBits::STOP1P5 => 0b11,
                    };
                    usart.cr2.modify(|_r, w| {
                        w.stop().bits(stop_bits)
                    });

                    // UE: enable USART
                    // RE: enable receiver
                    // TE: enable transceiver
                    usart
                        .cr1
                        .modify(|_r, w| w.ue().set_bit().re().set_bit().te().set_bit());

                    Serial { usart, pins }
                }

                /// Starts listening to the USART by enabling the _Received data
                /// ready to be read (RXNE)_ interrupt and _Transmit data
                /// register empty (TXE)_ interrupt
                pub fn listen(&mut self, event: Event) {
                    match event {
                        Event::Rxne => self.usart.cr1.modify(|_, w| w.rxneie().set_bit()),
                        Event::Txe => self.usart.cr1.modify(|_, w| w.txeie().set_bit()),
                    }
                }

                /// Stops listening to the USART by disabling the _Received data
                /// ready to be read (RXNE)_ interrupt and _Transmit data
                /// register empty (TXE)_ interrupt
                pub fn unlisten(&mut self, event: Event) {
                    match event {
                        Event::Rxne => self.usart.cr1.modify(|_, w| w.rxneie().clear_bit()),
                        Event::Txe => self.usart.cr1.modify(|_, w| w.txeie().clear_bit()),
                    }
                }

                /// Returns ownership of the borrowed register handles
                pub fn release(self) -> ($USARTX, PINS) {
                    (self.usart, self.pins)
                }

                /// Separates the serial struct into separate channel objects for sending (Tx) and
                /// receiving (Rx)
                pub fn split(self) -> (Tx<$USARTX>, Rx<$USARTX>) {
                    (
                        Tx {
                            _usart: PhantomData,
                        },
                        Rx {
                            _usart: PhantomData,
                        },
                    )
                }
            }

            impl Tx<$USARTX> {
                pub fn listen(&mut self) {
                    unsafe { (*$USARTX::ptr()).cr1.modify(|_, w| w.txeie().set_bit()) };
                }

                pub fn unlisten(&mut self) {
                    unsafe { (*$USARTX::ptr()).cr1.modify(|_, w| w.txeie().clear_bit()) };
                }
            }

            impl Rx<$USARTX> {
                pub fn listen(&mut self) {
                    unsafe { (*$USARTX::ptr()).cr1.modify(|_, w| w.rxneie().set_bit()) };
                }

                pub fn unlisten(&mut self) {
                    unsafe { (*$USARTX::ptr()).cr1.modify(|_, w| w.rxneie().clear_bit()) };
                }
            }

            impl crate::hal::serial::Read<u8> for Rx<$USARTX> {
                type Error = Error;

                fn read(&mut self) -> nb::Result<u8, Error> {
                    unsafe { &*$USARTX::ptr() }.read()
                }
            }

            impl crate::hal::serial::Write<u8> for Tx<$USARTX> {
                type Error = Infallible;

                fn flush(&mut self) -> nb::Result<(), Self::Error> {
                    unsafe { &*$USARTX::ptr() }.flush()
                }
                fn write(&mut self, byte: u8) -> nb::Result<(), Self::Error> {
                    unsafe { &*$USARTX::ptr() }.write(byte)
                }
            }

            impl<PINS> crate::hal::serial::Read<u8> for Serial<$USARTX, PINS> {
                type Error = Error;

                fn read(&mut self) -> nb::Result<u8, Error> {
                    self.usart.deref().read()
                }
            }

            impl<PINS> crate::hal::serial::Write<u8> for Serial<$USARTX, PINS> {
                type Error = Infallible;

                fn flush(&mut self) -> nb::Result<(), Self::Error> {
                    self.usart.deref().flush()
                }

                fn write(&mut self, byte: u8) -> nb::Result<(), Self::Error> {
                    self.usart.deref().write(byte)
                }
            }

        )+
    }
}

impl<USART> core::fmt::Write for Tx<USART>
where
    Tx<USART>: embedded_hal::serial::Write<u8>,
{
    fn write_str(&mut self, s: &str) -> core::fmt::Result {
        s.as_bytes()
            .iter()
            .try_for_each(|c| nb::block!(self.write(*c)))
            .map_err(|_| core::fmt::Error)
    }
}

hal! {
    /// # USART1 functions
    USART1: (
        usart1,
        usart1_remap,
        bit,
        |remap| remap == 1,
    ),
    /// # USART2 functions
    USART2: (
        usart2,
        usart2_remap,
        bit,
        |remap| remap == 1,
    ),
    /// # USART3 functions
    USART3: (
        usart3,
        usart3_remap,
        bits,
        |remap| remap,
    ),
}

pub type Rx1 = Rx<USART1>;
pub type Tx1 = Tx<USART1>;
pub type Rx2 = Rx<USART2>;
pub type Tx2 = Tx<USART2>;
pub type Rx3 = Rx<USART3>;
pub type Tx3 = Tx<USART3>;

use crate::dma::{Receive, TransferPayload, Transmit};

macro_rules! serialdma {
    ($(
        $USARTX:ident: (
            $rxdma:ident,
            $txdma:ident,
            $dmarxch:ty,
            $dmatxch:ty,
        ),
    )+) => {
        $(
            pub type $rxdma = RxDma<Rx<$USARTX>, $dmarxch>;
            pub type $txdma = TxDma<Tx<$USARTX>, $dmatxch>;

            impl Receive for $rxdma {
                type RxChannel = $dmarxch;
                type TransmittedWord = u8;
            }

            impl Transmit for $txdma {
                type TxChannel = $dmatxch;
                type ReceivedWord = u8;
            }

            impl TransferPayload for $rxdma {
                fn start(&mut self) {
                    self.channel.start();
                }
                fn stop(&mut self) {
                    self.channel.stop();
                }
            }

            impl TransferPayload for $txdma {
                fn start(&mut self) {
                    self.channel.start();
                }
                fn stop(&mut self) {
                    self.channel.stop();
                }
            }

            impl Rx<$USARTX> {
                pub fn with_dma(self, channel: $dmarxch) -> $rxdma {
                    RxDma {
                        payload: self,
                        channel,
                    }
                }
            }

            impl Tx<$USARTX> {
                pub fn with_dma(self, channel: $dmatxch) -> $txdma {
                    TxDma {
                        payload: self,
                        channel,
                    }
                }
            }

            impl $rxdma {
                pub fn split(mut self) -> (Rx<$USARTX>, $dmarxch) {
                    self.stop();
                    let RxDma {payload, channel} = self;
                    (
                        payload,
                        channel
                    )
                }
            }

            impl $txdma {
                pub fn split(mut self) -> (Tx<$USARTX>, $dmatxch) {
                    self.stop();
                    let TxDma {payload, channel} = self;
                    (
                        payload,
                        channel,
                    )
                }
            }

            impl<B> crate::dma::CircReadDma<B, u8> for $rxdma where B: as_slice::AsMutSlice<Element=u8> {
                fn circ_read(mut self, buffer: &'static mut [B; 2],
                ) -> CircBuffer<B, Self>
                {
                    {
                        let buffer = buffer[0].as_mut_slice();
                        self.channel.set_peripheral_address(unsafe{ &(*$USARTX::ptr()).dr as *const _ as u32 }, false);
                        self.channel.set_memory_address(buffer.as_ptr() as u32, true);
                        self.channel.set_transfer_length(buffer.len() * 2);

                        atomic::compiler_fence(Ordering::Release);

                        self.channel.ch().cr.modify(|_, w| { w
                            .mem2mem() .clear_bit()
                            .pl()      .medium()
                            .msize()   .bits8()
                            .psize()   .bits8()
                            .circ()    .set_bit()
                            .dir()     .clear_bit()
                        });
                    }

                    self.start();

                    CircBuffer::new(buffer, self)
                }
            }

            impl<B> crate::dma::ReadDma<B, u8> for $rxdma where B: as_slice::AsMutSlice<Element=u8> {
                fn read(mut self, buffer: &'static mut B,
                ) -> Transfer<W, &'static mut B, Self>
                {
                    {
                        let buffer = buffer.as_mut_slice();
                        self.channel.set_peripheral_address(unsafe{ &(*$USARTX::ptr()).dr as *const _ as u32 }, false);
                        self.channel.set_memory_address(buffer.as_ptr() as u32, true);
                        self.channel.set_transfer_length(buffer.len());
                    }
                    atomic::compiler_fence(Ordering::Release);
                    self.channel.ch().cr.modify(|_, w| { w
                        .mem2mem() .clear_bit()
                        .pl()      .medium()
                        .msize()   .bits8()
                        .psize()   .bits8()
                        .circ()    .clear_bit()
                        .dir()     .clear_bit()
                    });
                    self.start();

                    Transfer::w(buffer, self)
                }
            }

            impl<A, B> crate::dma::WriteDma<A, B, u8> for $txdma where A: as_slice::AsSlice<Element=u8>, B: Static<A> {
                fn write(mut self, buffer: B
                ) -> Transfer<R, B, Self>
                {
                    {
                        let buffer = buffer.borrow().as_slice();

                        self.channel.set_peripheral_address(unsafe{ &(*$USARTX::ptr()).dr as *const _ as u32 }, false);

                        self.channel.set_memory_address(buffer.as_ptr() as u32, true);
                        self.channel.set_transfer_length(buffer.len());
                    }

                    atomic::compiler_fence(Ordering::Release);

                    self.channel.ch().cr.modify(|_, w| { w
                        .mem2mem() .clear_bit()
                        .pl()      .medium()
                        .msize()   .bits8()
                        .psize()   .bits8()
                        .circ()    .clear_bit()
                        .dir()     .set_bit()
                    });
                    self.start();

                    Transfer::r(buffer, self)
                }
            }
        )+
    }
}

serialdma! {
    USART1: (
        RxDma1,
        TxDma1,
        dma1::C5,
        dma1::C4,
    ),
    USART2: (
        RxDma2,
        TxDma2,
        dma1::C6,
        dma1::C7,
    ),
    USART3: (
        RxDma3,
        TxDma3,
        dma1::C3,
        dma1::C2,
    ),
}