1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
//! Touch sense controller
//!
//! From STM32 (https://www.st.com/content/ccc/resource/technical/document/application_note/9d/be/03/8c/5d/8c/49/50/DM00088471.pdf/files/DM00088471.pdf/jcr:content/translations/en.DM00088471.pdf):
//!
//! The Cs capacitance is a key parameter for sensitivity. For touchkey sensors, the Cs value is
//! usually comprised between 8.7nF to 22nF. For linear and rotary touch sensors, the value is
//! usually comprised between 47nF and 100nF. These values are given as reference for an
//! electrode fitting a human finger tip size across a few millimeters dielectric panel.

use crate::gpio::{gpioa, gpiob, Alternate, AF3};
use crate::rcc::Rcc;
use crate::stm32::TSC;

#[derive(Debug)]
pub enum Event {
    /// Max count error
    MaxCountError,
    /// End of acquisition
    EndOfAcquisition,
}

#[derive(Debug)]
pub enum Error {
    /// Max count error
    MaxCountError,
    /// Wrong GPIO for reading
    InvalidPin,
}

pub trait TscPin<TSC> {
    type GROUP;
    type OFFSET;

    /// Returns the group a pin belongs to
    fn group() -> Self::GROUP;

    /// Returns the offset of the pin within the control registers
    fn offset() -> Self::OFFSET;
}

macro_rules! tsc_pins {
    ($($pin:ty => ($group:expr,$offset:expr)),+ $(,)*) => {
        $(
            impl TscPin<TSC> for $pin {
                type GROUP = u8;
                type OFFSET = u8;

                fn group() -> u8 { $group }
                fn offset() -> u8 { $offset }
            }
        )+
    };
}

tsc_pins!(
    gpioa::PA0<Alternate<AF3>> => (1_u8, 1_u8),
    gpioa::PA1<Alternate<AF3>> => (1_u8, 2_u8),
    gpioa::PA2<Alternate<AF3>> => (1_u8, 3_u8),
    gpioa::PA3<Alternate<AF3>> => (1_u8, 4_u8),
);

tsc_pins!(
    gpioa::PA4<Alternate<AF3>> => (2_u8, 1_u8),
    gpioa::PA5<Alternate<AF3>> => (2_u8, 2_u8),
    gpioa::PA6<Alternate<AF3>> => (2_u8, 3_u8),
    gpioa::PA7<Alternate<AF3>> => (2_u8, 4_u8),
);

tsc_pins!(
    gpiob::PB0<Alternate<AF3>> => (3_u8, 2_u8),
    gpiob::PB1<Alternate<AF3>> => (3_u8, 3_u8),
    gpiob::PB2<Alternate<AF3>> => (3_u8, 4_u8),
);

tsc_pins!(
    gpioa::PA9<Alternate<AF3>> => (4_u8, 1_u8),
    gpioa::PA10<Alternate<AF3>> => (4_u8, 2_u8),
    gpioa::PA11<Alternate<AF3>> => (4_u8, 3_u8),
    gpioa::PA12<Alternate<AF3>> => (4_u8, 4_u8),
);

tsc_pins!(
    gpiob::PB3<Alternate<AF3>> => (5_u8, 1_u8),
    gpiob::PB4<Alternate<AF3>> => (5_u8, 2_u8),
    gpiob::PB6<Alternate<AF3>> => (5_u8, 3_u8),
    gpiob::PB7<Alternate<AF3>> => (5_u8, 4_u8),
);

pub struct Tsc {
    tsc: TSC,
}

#[derive(Debug)]
pub struct Config {
    pub clock_prescale: Option<ClockPrescaler>,
    pub max_count: Option<MaxCount>,
    pub charge_transfer_high: Option<ChargeDischargeTime>,
    pub charge_transfer_low: Option<ChargeDischargeTime>,
}

#[derive(Debug)]
pub enum ClockPrescaler {
    Hclk = 0b000,
    HclkDiv2 = 0b001,
    HclkDiv4 = 0b010,
    HclkDiv8 = 0b011,
    HclkDiv16 = 0b100,
    HclkDiv32 = 0b101,
    HclkDiv64 = 0b110,
    HclkDiv128 = 0b111,
}

#[derive(Debug)]
pub enum MaxCount {
    /// 000: 255
    U255 = 0b000,
    /// 001: 511
    U511 = 0b001,
    /// 010: 1023
    U1023 = 0b010,
    /// 011: 2047
    U2047 = 0b011,
    /// 100: 4095
    U4095 = 0b100,
    /// 101: 8191
    U8191 = 0b101,
    /// 110: 16383
    U16383 = 0b110,
}

#[derive(Debug)]
/// How many tsc cycles are spent charging / discharging
pub enum ChargeDischargeTime {
    C1 = 0b0000,
    C2 = 0b0001,
    C3 = 0b0010,
    C4 = 0b0011,
    C5 = 0b0100,
    C6 = 0b0101,
    C7 = 0b0110,
    C8 = 0b0111,
    C9 = 0b1000,
    C10 = 0b1001,
    C11 = 0b1010,
    C12 = 0b1011,
    C13 = 0b1100,
    C14 = 0b1101,
    C15 = 0b1110,
    C16 = 0b1111,
}

impl Tsc {
    /// Initialise the touch controller peripheral
    pub fn tsc(tsc: TSC, rcc: &mut Rcc, cfg: Option<Config>) -> Self {
        // Enable the peripheral clock
        rcc.regs.ahbenr.modify(|_, w| w.tscen().set_bit());
        rcc.regs.ahbrstr.modify(|_, w| w.tscrst().set_bit());
        rcc.regs.ahbrstr.modify(|_, w| w.tscrst().clear_bit());

        let config = cfg.unwrap_or(Config {
            clock_prescale: None,
            max_count: None,
            charge_transfer_high: None,
            charge_transfer_low: None,
        });

        tsc.cr.write(|w| unsafe {
            w.ctph()
                .bits(
                    config
                        .charge_transfer_high
                        .unwrap_or(ChargeDischargeTime::C2) as u8,
                )
                .ctpl()
                .bits(
                    config
                        .charge_transfer_low
                        .unwrap_or(ChargeDischargeTime::C2) as u8,
                )
                .sse()
                .set_bit()
                .ssd()
                .bits(16)
                .pgpsc()
                .bits(config.clock_prescale.unwrap_or(ClockPrescaler::HclkDiv16) as u8)
                .mcv()
                .bits(config.max_count.unwrap_or(MaxCount::U8191) as u8)
                .tsce()
                .set_bit()
        });

        // clear interrupt & flags
        tsc.icr.write(|w| w.eoaic().set_bit().mceic().set_bit());

        Tsc { tsc }
    }

    /// Set up sample group
    pub fn setup_sample_group<PIN>(&mut self, _: &mut PIN)
    where
        PIN: TscPin<TSC, GROUP = u8, OFFSET = u8>,
    {
        let bit_pos = PIN::offset() - 1 + (4 * (PIN::group() - 1));
        let group_pos = PIN::group() - 1;

        // Schmitt trigger hysteresis on sample IOs
        self.tsc
            .iohcr
            .modify(|r, w| unsafe { w.bits(r.bits() | 1 << bit_pos) });

        // Set the sampling pin
        self.tsc
            .ioscr
            .modify(|r, w| unsafe { w.bits(r.bits() | 1 << bit_pos) });

        // Set the acquisition group based on the channel pins
        self.tsc
            .iogcsr
            .modify(|r, w| unsafe { w.bits(r.bits() | 1 << group_pos) });
    }

    /// Add a GPIO for use as a channel
    pub fn enable_channel<PIN>(&self, _channel: &mut PIN)
    where
        PIN: TscPin<TSC, GROUP = u8, OFFSET = u8>,
    {
        let bit_pos = PIN::offset() - 1 + (4 * (PIN::group() - 1));

        // Set a channel pin
        self.tsc
            .ioccr
            .modify(|r, w| unsafe { w.bits(r.bits() | 1 << bit_pos) });
    }

    /// Remove a GPIO from use as a channel
    pub fn disable_channel<PIN>(&self, _channel: &mut PIN)
    where
        PIN: TscPin<TSC, GROUP = u8, OFFSET = u8>,
    {
        let bit_pos = PIN::offset() - 1 + (4 * (PIN::group() - 1));

        // Remove a channel pin
        self.tsc
            .ioccr
            .modify(|r, w| unsafe { w.bits(r.bits() & !(1 << bit_pos)) });
    }

    /// Starts a charge acquisition
    pub fn start(&self) {
        self.clear(Event::EndOfAcquisition);
        self.clear(Event::MaxCountError);

        // Discharge the caps ready for a new reading
        self.tsc.cr.modify(|_, w| w.iodef().clear_bit());
        self.tsc.cr.modify(|_, w| w.start().set_bit());
    }

    /// Check for events on the TSC
    pub fn check_event(&self) -> Option<Event> {
        let isr = self.tsc.isr.read();
        if isr.eoaf().bit_is_set() {
            Some(Event::EndOfAcquisition)
        } else if isr.mcef().bit_is_set() {
            Some(Event::MaxCountError)
        } else {
            None
        }
    }

    /// Clear interrupt & flags
    pub fn clear(&self, event: Event) {
        match event {
            Event::EndOfAcquisition => {
                self.tsc.icr.write(|w| w.eoaic().set_bit());
            }
            Event::MaxCountError => {
                self.tsc.icr.write(|w| w.mceic().set_bit());
            }
        }
    }

    /// Blocks waiting for a acquisition to complete or for a Max Count Error
    pub fn acquire(&self) -> Result<(), Error> {
        // Start the acquisition
        self.start();

        loop {
            match self.check_event() {
                Some(Event::MaxCountError) => {
                    self.clear(Event::MaxCountError);
                    break Err(Error::MaxCountError);
                }
                Some(Event::EndOfAcquisition) => {
                    self.clear(Event::EndOfAcquisition);
                    break Ok(());
                }
                None => {}
            }
        }
    }

    /// Reads the group count register
    pub fn read<PIN>(&self, _input: &mut PIN) -> Result<u16, Error>
    where
        PIN: TscPin<TSC, GROUP = u8, OFFSET = u8>,
    {
        let bit_pos = PIN::offset() - 1 + (4 * (PIN::group() - 1));

        // Read the current channel config
        let channel = self.tsc.ioccr.read().bits();

        // Check whether one of the enabled pins was supplied
        if channel & (1 << bit_pos) != 0 {
            Ok(self.read_unchecked(PIN::group()))
        } else {
            Err(Error::InvalidPin)
        }
    }

    /// Reads the tsc group count register
    pub fn read_unchecked(&self, group: u8) -> u16 {
        match group {
            1 => self.tsc.iog1cr.read().cnt().bits(),
            2 => self.tsc.iog2cr.read().cnt().bits(),
            3 => self.tsc.iog3cr.read().cnt().bits(),
            4 => self.tsc.iog4cr.read().cnt().bits(),
            5 => self.tsc.iog5cr.read().cnt().bits(),
            6 => self.tsc.iog6cr.read().cnt().bits(),
            _ => 0,
        }
    }

    /// Enables an interrupt event
    pub fn listen(&mut self, event: Event) {
        match event {
            Event::EndOfAcquisition => {
                self.tsc.ier.modify(|_, w| w.eoaie().set_bit());
            }
            Event::MaxCountError => {
                self.tsc.ier.modify(|_, w| w.mceie().set_bit());
            }
        }
    }

    /// Disables an interrupt event
    pub fn unlisten(&self, event: Event) {
        match event {
            Event::EndOfAcquisition => {
                self.tsc.ier.modify(|_, w| w.eoaie().clear_bit());
            }
            Event::MaxCountError => {
                self.tsc.ier.modify(|_, w| w.mceie().clear_bit());
            }
        }
    }

    /// Releases the TSC peripheral
    pub fn free(self) -> TSC {
        self.tsc
    }
}