1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
use crate::stm32::rcc::cfgr::SWW;
use crate::time::Hertz;

/// Extension trait that sets up the `RCC` peripheral
pub trait RccExt {
    /// Configure the clocks of the RCC peripheral
    fn configure(self) -> CFGR;
}

impl RccExt for crate::stm32::RCC {
    fn configure(self) -> CFGR {
        CFGR {
            hclk: None,
            pclk: None,
            sysclk: None,
            clock_src: SysClkSource::HSI,
            rcc: self,
        }
    }
}

/// Constrained RCC peripheral
pub struct Rcc {
    pub clocks: Clocks,
    pub(crate) regs: crate::stm32::RCC,
}

const HSI: u32 = 8_000_000; // Hz
const HSI48: u32 = 48_000_000; // Hz - (available on STM32F04x, STM32F07x and STM32F09x devices only)

enum SysClkSource {
    HSI,
    HSE(u32),
    HSI48,
}

pub struct CFGR {
    hclk: Option<u32>,
    pclk: Option<u32>,
    sysclk: Option<u32>,
    clock_src: SysClkSource,
    rcc: crate::stm32::RCC,
}

impl CFGR {
    pub fn hse<F>(mut self, freq: F) -> Self
    where
        F: Into<Hertz>,
    {
        self.clock_src = SysClkSource::HSE(freq.into().0);
        self
    }

    pub fn hclk<F>(mut self, freq: F) -> Self
    where
        F: Into<Hertz>,
    {
        self.hclk = Some(freq.into().0);
        self
    }

    pub fn pclk<F>(mut self, freq: F) -> Self
    where
        F: Into<Hertz>,
    {
        self.pclk = Some(freq.into().0);
        self
    }

    pub fn sysclk<F>(mut self, freq: F) -> Self
    where
        F: Into<Hertz>,
    {
        self.sysclk = Some(freq.into().0);
        self
    }

    pub fn freeze(self, flash: &mut crate::stm32::FLASH) -> Rcc {
        // Default to lowest frequency clock on all systems.
        let sysclk = self.sysclk.unwrap_or(HSI);

        let r_sysclk; // The "real" sysclock value, calculated below
        let pllmul_bits;

        // Select clock source based on user input and capability
        // Highest selected frequency source available takes precedent.
        // For F04x, F07x, F09x parts, use HSI48 if requested.
        let src_clk_freq = match self.clock_src {
            SysClkSource::HSE(freq) => freq,
            SysClkSource::HSI48 => HSI48,
            _ => HSI,
        };

        // Pll check
        if sysclk == src_clk_freq {
            // Bypass pll if src clk and requested sysclk are the same, to save power.
            // The only reason to override this behaviour is if the sysclk source were HSI, and you
            // were running the USB off the PLL...
            pllmul_bits = None;
            r_sysclk = src_clk_freq;
        } else {
            let pllmul =
                (4 * self.sysclk.unwrap_or(src_clk_freq) + src_clk_freq) / src_clk_freq / 2;
            let pllmul = core::cmp::min(core::cmp::max(pllmul, 2), 16);
            r_sysclk = pllmul * src_clk_freq / 2;

            pllmul_bits = if pllmul == 2 {
                None
            } else {
                Some(pllmul as u8 - 2)
            };
        }

        let hpre_bits = self
            .hclk
            .map(|hclk| match r_sysclk / hclk {
                0 => unreachable!(),
                1 => 0b0111,
                2 => 0b1000,
                3...5 => 0b1001,
                6...11 => 0b1010,
                12...39 => 0b1011,
                40...95 => 0b1100,
                96...191 => 0b1101,
                192...383 => 0b1110,
                _ => 0b1111,
            })
            .unwrap_or(0b0111);

        let hclk = sysclk / (1 << (hpre_bits - 0b0111));

        let ppre_bits = self
            .pclk
            .map(|pclk| match hclk / pclk {
                0 => unreachable!(),
                1 => 0b011,
                2 => 0b100,
                3...5 => 0b101,
                6...11 => 0b110,
                _ => 0b111,
            })
            .unwrap_or(0b011);

        let ppre: u8 = 1 << (ppre_bits - 0b011);
        let pclk = hclk / cast::u32(ppre);

        // adjust flash wait states
        unsafe {
            flash.acr.write(|w| {
                w.latency().bits(if sysclk <= 24_000_000 {
                    0b000
                } else if sysclk <= 48_000_000 {
                    0b001
                } else {
                    0b010
                })
            })
        }

        // Enable the requested clock
        match self.clock_src {
            SysClkSource::HSE(_) => {
                self.rcc
                    .cr
                    .modify(|_, w| w.csson().on().hseon().on().hsebyp().not_bypassed());

                while !self.rcc.cr.read().hserdy().bit_is_set() {}
            }
            SysClkSource::HSI48 => {
                self.rcc.cr2.modify(|_, w| w.hsi48on().set_bit());
                while self.rcc.cr2.read().hsi48rdy().bit_is_clear() {}
            }
            SysClkSource::HSI => {
                self.rcc.cr.write(|w| w.hsion().set_bit());
                while self.rcc.cr.read().hsirdy().bit_is_clear() {}
            }
        };

        // Set up rcc based on above calculated configuration.

        // Enable PLL
        if let Some(pllmul_bits) = pllmul_bits {
            let pllsrc_bit: u8 = match self.clock_src {
                SysClkSource::HSI => 0b00,
                SysClkSource::HSI48 => 0b11,
                SysClkSource::HSE(_) => 0b01,
            };

            // Set PLL source and multiplier
            self.rcc
                .cfgr
                .write(|w| unsafe { w.pllsrc().bits(pllsrc_bit).pllmul().bits(pllmul_bits) });

            self.rcc.cr.write(|w| w.pllon().set_bit());
            while self.rcc.cr.read().pllrdy().bit_is_clear() {}

            self.rcc.cfgr.modify(|_, w| unsafe {
                w.ppre().bits(ppre_bits).hpre().bits(hpre_bits).sw().pll()
            });
        } else {
            let sw_var = match self.clock_src {
                SysClkSource::HSI => SWW::HSI,
                SysClkSource::HSI48 => SWW::HSI48,
                SysClkSource::HSE(_) => SWW::HSE,
            };

            // use HSI as source
            self.rcc.cfgr.write(|w| unsafe {
                w.ppre()
                    .bits(ppre_bits)
                    .hpre()
                    .bits(hpre_bits)
                    .sw()
                    .variant(sw_var)
            });
        }
        Rcc {
            clocks: Clocks {
                hclk: Hertz(hclk),
                pclk: Hertz(pclk),
                sysclk: Hertz(sysclk),
            },
            regs: self.rcc,
        }
    }
}

/// Frozen clock frequencies
///
/// The existence of this value indicates that the clock configuration can no longer be changed
#[derive(Clone, Copy)]
pub struct Clocks {
    hclk: Hertz,
    pclk: Hertz,
    sysclk: Hertz,
}

impl Clocks {
    /// Returns the frequency of the AHB
    pub fn hclk(&self) -> Hertz {
        self.hclk
    }

    /// Returns the frequency of the APB
    pub fn pclk(&self) -> Hertz {
        self.pclk
    }

    /// Returns the system (core) frequency
    pub fn sysclk(&self) -> Hertz {
        self.sysclk
    }
}