1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
//! Digital filter for sigma delta modulators (DFSDM) support. Seem H742 RM, chapter 30.
// todo: This module is currently a mess due to needing to support 2 separate register access
// todo syntaxes re channels and filters, depending on variant.
use core::ops::Deref;
use cfg_if::cfg_if;
use num_traits::Float; // Float rounding.
use crate::{
clocks::Clocks,
pac::{self, RCC},
util::rcc_en_reset,
};
cfg_if! {
if #[cfg(any(feature = "l4", feature = "l5", feature = "h7b3"))] {
use crate::pac::dfsdm1 as dfsdm_p;
} else {
use crate::pac::dfsdm as dfsdm_p;
}
}
#[cfg(any(feature = "f3", feature = "l4"))]
use crate::dma::DmaInput;
#[cfg(not(any(feature = "f4", feature = "l552")))]
use crate::dma::{self, ChannelCfg, DmaChannel};
use crate::pac::DMA1;
#[derive(Clone, Copy)]
pub enum Filter {
F0,
F1,
//
F2,
//
F3,
}
#[derive(Clone, Copy)]
#[repr(u8)]
pub enum DfsdmChannel {
C0 = 0,
C1 = 1,
C2 = 2,
C3 = 3,
C4 = 4,
C5 = 5,
C6 = 6,
C7 = 7,
}
#[derive(Clone, Copy)]
#[repr(u8)]
/// Sinc filter order. Sets FLTxFCR register, FORD field.
pub enum FilterOrder {
/// FastSinc filter type
FastSinc = 0,
/// Sinc1 filter type
Sinc1 = 1,
/// Sinc2 filter type
Sinc2 = 2,
/// Sinc3 filter type
Sinc3 = 3,
/// Sinc4 filter type
Sinc4 = 4,
/// Sinc5 filter type
Sinc5 = 5,
}
#[derive(Clone, Copy)]
#[repr(u8)]
/// Toggle clock clourse between system and audio clocks. Sets CH0CFGR1 register, CKOUTSRC field.
pub enum DfsdmClockSrc {
/// Source for output clock is from system clock
SysClk = 0,
/// Source for output clock is from audio clock
/// H7: Audio clock source is SAI1 clock selected by SAI1SEL[1:0] field in RCC configuration
AudioClk = 1,
}
#[derive(Clone, Copy)]
#[repr(u8)]
/// SPI clock select for a given channel.
pub enum SpiClock {
/// Clock coming from external CKINy input - sampling point according SITP[1:0
External = 0,
/// Clock coming from internal CKOUT output - sampling point according SITP[1:0]
Internal = 1,
/// Clock coming from internal CKOUT - sampling point on each second CKOUT falling edge
InternalFalling = 2,
/// Clock coming from internal CKOUT output - sampling point on each second CKOUT rising edge.
InternalRising = 3,
}
#[derive(Clone, Copy)]
/// The type of DFSDM interrupt to configure. Reference Section 30.5 of the H742 RM.
/// Enabled in FLTxCR2. register. Monitor in FLTxISR register. Cleared by writing to the
/// FLTxICR register, for most.
pub enum DfsdmInterrupt {
/// End of injected conversion. Enabled by JEOCIE field
EndOfInjectedConversion,
/// End of regular conversion. Enabled by REOCIE field
EndOfConversion,
/// Data overrun for injected conversions. Enabled by JOVRIE field
DataOverrunInjected,
/// Data overrun for regular conversions. Enabled by ROVRIE field
DataOverrun,
/// Analog watchdog. Enabled by AWDIE field
AnalogWatchdog,
/// Short-circuit deector. Enabled by SCDIE field
ShortCircuit,
/// Channel clock absense. Enabled by CKABIE field
ChannelClockAbsense,
}
#[derive(Clone, Copy, PartialEq)]
/// Set conversions to regular, continous, or contiuous fast mode. Sets FLTxCR1 register, RCONT
/// and FAST fields.
pub enum Continuous {
/// The regular channel is converted just once for each conversion request
OneShot,
/// The regular channel is converted repeatedly after each conversion request
Continuous,
/// Fast conversion mode enabled.
/// When converting a regular conversion in continuous mode, having enabled the fast mode causes
/// each conversion (except the first) to execute faster than in standard mode. This bit has no effect on
/// conversions which are not continuous.
ContinuousFastMode,
}
// todo: Not sure how to handle the 24 bit signed data throughout!!
/// Configuration for the DFSDM peripheral.
/// All operations in the DFSDM peripheral are in signed format (filtering, integration, offset
/// correction, right bit shift).
pub struct DfsdmConfig {
/// Set the clock source to Sysclk, or Audio clock. Audio clock appears to be the SAI clock source,
/// at least on H7. (?)
/// Defaults to Audio clock.
pub clock_src: DfsdmClockSrc,
/// Sampling frequency. Used to adjust clock divider. Defaults to 48kHz. (48_000_000)
pub sampling_freq: u32,
/// Sample as one-shot, continuous, or continuous fast-mode. Defaults to continuous fast mode.
pub continuous: Continuous,
/// Sinc filter order. Defaults to Sinc4.
pub filter_order: FilterOrder,
/// Sinc filter oversampling ratio. Also known as decimation ratio
pub filter_oversampling_ratio: u16,
/// Integrator oversampling ratio. Also known as averaging (?) ratio
pub integrator_oversampling_ratio: u8,
/// To have the result aligned to a 24-bit value, each channel defines a number of right bit shifts
/// which will be applied on each conversion result (injected or regular) from a given channel.
/// The data bit shift number is stored in DTRBS[4:0] bits in DFSDM_CHyCFGR2 register.
/// The right bit-shift is rounding the result to nearest integer value. The sign of shifted result is
/// maintained, in order to have valid 24-bit signed format of result data.
pub right_shift_bits: u8,
/// The offset correction allows to calibrate the external sigma-delta modulator offset error. The
/// user configures the offset register with a signed 24-bit correction, and this register is
/// automatically added to the output result. The offset correction value is usually the result of a
/// calibration routine embedded within the microcontroller software that performs the offset
/// calibration calculation and stores the correction into the offset register. Defaults to 0.
/// This must be a 24 bit signed integer, which Rust doesn't support. So, to make it negative, you might
/// use something like this: `offset:(1<<24) - 1_000;`
pub offset: u32,
/// SPI clock select for channel y. Ie internal or external.
pub spi_clock: SpiClock,
}
impl Default for DfsdmConfig {
fn default() -> Self {
Self {
clock_src: DfsdmClockSrc::AudioClk,
sampling_freq: 48_000,
continuous: Continuous::ContinuousFastMode,
filter_order: FilterOrder::Sinc4, // From the PDM mic AN
filter_oversampling_ratio: 64, // From the PDM mic AN
integrator_oversampling_ratio: 1, // From the PDM mic AN
right_shift_bits: 0, // PDM mic AN uses 0x02. 8 seems right to get to 24 bit signed?
offset: 0,
spi_clock: SpiClock::Internal,
}
}
}
/// Represents the Digital filter for sigma delta modulators (DFSDM) peripheral, for
/// interfacing with external Σ∆ modulators.
pub struct Dfsdm<R> {
pub regs: R,
config: DfsdmConfig,
}
impl<R> Dfsdm<R>
where
R: Deref<Target = dfsdm_p::RegisterBlock>,
R: Deref<Target = dfsdm_p::RegisterBlock>,
{
/// Initialize a DFSDM peripheral, including enabling and resetting
/// its RCC peripheral clock.
pub fn new(regs: R, config: DfsdmConfig, clock_cfg: &Clocks) -> Self {
let rcc = unsafe { &(*RCC::ptr()) };
#[cfg(not(feature = "l4"))]
rcc_en_reset!(apb2, dfsdm1, rcc);
#[cfg(feature = "l4")]
rcc_en_reset!(apb2, dfsdm, rcc);
// The frequency of this CKOUT signal is derived from DFSDM clock or from audio clock (see
// CKOUTSRC bit in CH0CFGR1 register) divided by a predivider (see CKOUTDIV
// bits in CH0CFGR1 register). If the output clock is stopped, then CKOUT signal is
// set to low state (output clock can be stopped by CKOUTDIV=0 in CHyCFGR1
// register or by DFSDMEN=0 in CH0CFGR1 register).
// The output clock signal frequency must be in the range 0 - 20 MHz.
// PDM mic AN: The clock divider value must respect the following formula:
// Divider = DFSDM Clock Source / (AUDIO_SAMPLING_FREQUENCY ×
// DECIMATION_FACTOR)
// (Note that for a 3.072Mhz clock , 64 decimation factor and 48K audio, the divider
// works out to 1. With a 12.288Mhz clock, and the same factors, it's 4.)
let clock_speed = match config.clock_src {
DfsdmClockSrc::SysClk => clock_cfg.sysclk(),
// todo: Conflicting docs on if this is apb2 or audio clock, and I'm not sure what audio clock is
DfsdmClockSrc::AudioClk => clock_cfg.sai1_speed(),
};
// We want it to round to nearest divider, not floor round. Let's say our clock speed is slightly lower than
// the target - we might get a divider calculated to be 3.99. With integer math, that would round down to 3,
// and be effectively wrong - hence the floats.
let divider = clock_speed as f32
/ (config.sampling_freq * config.filter_oversampling_ratio as u32) as f32;
let divider = divider.round() as u8;
// 1- 255: Defines the division of system clock for the serial clock output for CKOUT signal in range 2 -
// 256 (Divider = CKOUTDIV+1).
// CKOUTDIV also defines the threshold for a clock absence detection.
assert!(divider >= 2); // (1 is invalid. 2 would disable the output clock.)
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cfgr1 = ®s.ch0cfgr1;
} else if #[cfg(any(feature = "l4"))] {
let cfgr1 = ®s.chcfg0r1;
} else {
let cfgr1 = ®s.ch0.cfgr1;
}
}
cfgr1.modify(|_, w| unsafe {
w.ckoutsrc().bit(config.clock_src as u8 != 0);
w.ckoutdiv().bits(divider as u8 - 1)
});
// Configuring the input serial interface
// The following parameters must be configured for the input serial interface:
// • Output clock predivider. There is a programmable predivider to generate the output
// clock from DFSDM clock (2 - 256). It is defined by CKOUTDIV[7:0] bits in
// CH0CFGR1 register.
// • Serial interface type and input clock phase. Selection of SPI or Manchester coding
// and sampling edge of input clock. It is defined by SITP [1:0] bits in
// CHyCFGR1 register.
// • Input clock source. External source from CKINy pin or internal from CKOUT pin. It is
// defined by SPICKSEL[1:0] field in CHyCFGR1 register.
// • Final data right bit-shift. Defines the final data right bit shift to have the result aligned
// to a 24-bit value. It is defined by DTRBS[4:0] in CHyCFGR2 register.
// • Channel offset per channel. Defines the analog offset of a given serial channel (offset
// of connected external Σ∆ modulator). It is defined by OFFSET[23:0] bits in
// CHyCFGR2 register.
// • short-circuit detector and clock absence per channel enable. To enable or disable
// the short-circuit detector (by SCDEN bit) and the clock absence monitoring (by
// CKABEN bit) on a given serial channel in register CHyCFGR1.
// • Analog watchdog filter and short-circuit detector threshold settings. To configure
// channel analog watchdog filter parameters and channel short-circuit detector
// parameters. Configurations are defined in CHyAWSCDR register.
Self { regs, config }
}
/// Enables the DFSDM peripheral.
/// The DFSDM interface is globally enabled by setting DFSDMEN=1 in the
/// CH0CFGR1 register. Once DFSDM is globally enabled, all input channels (y=0..7)
/// and digital filters FLTx (x=0..3) start to work if their enable bits are set (channel
/// enable bit CHEN in CHyCFGR1 and FLTx enable bit DFEN in
/// FLTxCR1).
pub fn enable(&mut self) {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cfgr1 = &self.regs.ch0cfgr1;
} else if #[cfg(any(feature = "l4"))] {
let cfgr1 = &self.regs.chcfg0r1;
} else {
let cfgr1 = &self.regs.ch0.cfgr1;
}
}
cfgr1.modify(|_, w| w.dfsdmen().set_bit());
}
/// Disables the DFSDM peripheral.
/// DFSDM must be globally disabled (by DFSDMEN=0 in CH0CFGR1) before
/// stopping the system clock to enter in the STOP mode of the device
pub fn disable(&mut self) {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cfgr1 = &self.regs.ch0cfgr1;
} else if #[cfg(any(feature = "l4"))] {
let cfgr1 = &self.regs.chcfg0r1;
} else {
let cfgr1 = &self.regs.ch0.cfgr1;
}
}
cfgr1.modify(|_, w| w.dfsdmen().clear_bit());
}
/// Configures and enables the DFSDM filter for a given channel, and enables
/// that channel.
/// Digital filter x FLTx (x=0..3) is enabled by setting DFEN=1 in the
/// FLTxCR1 register. Once FLTx is enabled (DFEN=1), both Sincx
/// digital filter unit and integrator unit are reinitialized.
/// Note that this function sets `DFEN`, so run it `after` configuring other settings such
/// as DMA.
pub fn enable_filter(&mut self, filter: Filter, channel: DfsdmChannel) {
// Setting RCONT in the FLTxCR1 register causes regular conversions to execute in
// continuous mode. RCONT=1 means that the channel selected by RCH[2:0] is converted
// repeatedly after ‘1’ is written to RSWSTART.
// The regular conversions executing in continuous mode can be stopped by writing ‘0’ to
// RCONT. After clearing RCONT, the on-going conversion is stopped immediately.
// In continuous mode, the data rate can be increased by setting the FAST bit in the
// FLTxCR1 register. In this case, the filter does not need to be refilled by new fresh
// data if converting continuously from one channel because data inside the filter is valid from
// previously sampled continuous data. The speed increase depends on the chosen filter
// order. The first conversion in fast mode (FAST=1) after starting a continuous conversion by
// RSWSTART=1 takes still full time (as when FAST=0), then each subsequent conversion is
// finished in shorter intervals.
// DFSDM contains a Sincx
// type digital filter implementation. This Sincx filter performs an input
// digital data stream filtering, which results in decreasing the output data rate (decimation)
// and increasing the output data resolution. The Sincx
// digital filter is configurable in order to
// reach the required output data rates and required output data resolution. The configurable
// parameters are:
// • Filter order/type: (see FORD[2:0] bits in FLTxFCR register):
// – FastSinc
// – Sinc1
// – Sinc2
// – Sinc3
// – Sinc4
// – Sinc5
// • Filter oversampling/decimation ratio (see FOSR[9:0] bits in FLTxFCR
// register):
// – FOSR = 1-1024 - for FastSinc filter and Sincx filter x = FORD = 1..3
// – FOSR = 1-215 - for Sincx filter x = FORD = 4
// – FOSR = 1-73 - for Sincx filter x = FORD = 5
// todo: RSYNC
// todo: Macro this?
assert!(self.config.filter_oversampling_ratio <= 1_023);
// DFSDM on-off control
// The DFSDM interface is globally enabled by setting DFSDMEN=1 in the
// DFSDM_CH0CFGR1 register. Once DFSDM is globally enabled, all input channels (y=0..7)
// and digital filters DFSDM_FLTx (x=0..3) start to work if their enable bits are set (channel
// enable bit CHEN in DFSDM_CHyCFGR1 and DFSDM_FLTx enable bit DFEN in
// DFSDM_FLTxCR1).
// Digital filter x DFSDM_FLTx (x=0..3) is enabled by setting DFEN=1 in the
// DFSDM_FLTxCR1 register. Once DFSDM_FLTx is enabled (DFEN=1), both Sincx
// digital filter unit and integrator unit are reinitialized.
match filter {
Filter::F0 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let fcr = &self.regs.flt0fcr;
let cr1 = &self.regs.flt0cr1;
} else if #[cfg(any(feature = "l4"))] {
let fcr = &self.regs.dfsdm0_fcr;
let cr1 = &self.regs.dfsdm0_cr1;
} else {
let fcr = &self.regs.flt0.fcr;
let cr1 = &self.regs.flt0.cr1;
}
}
fcr.modify(|_, w| unsafe {
w.ford().bits(self.config.filter_order as u8);
w.fosr().bits(self.config.filter_oversampling_ratio - 1);
w.iosr().bits(self.config.integrator_oversampling_ratio - 1)
});
cr1.modify(|_, w| unsafe {
w.rcont().bit(self.config.continuous != Continuous::OneShot);
w.fast()
.bit(self.config.continuous == Continuous::ContinuousFastMode);
w.rch().bits(channel as u8);
w.dfen().set_bit()
});
}
#[cfg(feature = "l4x6")]
Filter::F1 => (),
#[cfg(not(feature = "l4x6"))]
Filter::F1 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let fcr = &self.regs.flt1fcr;
let cr1 = &self.regs.flt1cr1;
} else if #[cfg(any(feature = "l4"))] {
// let fcr = &self.regs.dfsdm1_fcr;
// let cr1 = &self.regs.dfsdm1_cr1;
} else {
let fcr = &self.regs.flt1.fcr;
let cr1 = &self.regs.flt1.cr1;
}
}
fcr.modify(|_, w| unsafe {
w.ford().bits(self.config.filter_order as u8);
w.fosr().bits(self.config.filter_oversampling_ratio - 1);
w.iosr().bits(self.config.integrator_oversampling_ratio - 1)
});
cr1.modify(|_, w| unsafe {
w.rcont().bit(self.config.continuous != Continuous::OneShot);
w.fast()
.bit(self.config.continuous == Continuous::ContinuousFastMode);
w.rch().bits(channel as u8);
w.dfen().set_bit()
});
}
Filter::F2 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let fcr = &self.regs.flt2fcr;
let cr1 = &self.regs.flt2cr1;
} else if #[cfg(any(feature = "l4"))] {
let fcr = &self.regs.dfsdm2_fcr;
let cr1 = &self.regs.dfsdm2_cr1;
} else {
let fcr = &self.regs.flt2.fcr;
let cr1 = &self.regs.flt2.cr1;
}
}
fcr.modify(|_, w| unsafe {
w.ford().bits(self.config.filter_order as u8);
w.fosr().bits(self.config.filter_oversampling_ratio - 1);
w.iosr().bits(self.config.integrator_oversampling_ratio - 1)
});
cr1.modify(|_, w| unsafe {
w.rcont().bit(self.config.continuous != Continuous::OneShot);
w.fast()
.bit(self.config.continuous == Continuous::ContinuousFastMode);
w.rch().bits(channel as u8);
w.dfen().set_bit()
});
}
Filter::F3 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let fcr = &self.regs.flt3fcr;
let cr1 = &self.regs.flt3cr1;
} else if #[cfg(any(feature = "l4"))] {
let fcr = &self.regs.dfsdm3_fcr;
let cr1 = &self.regs.dfsdm3_cr1;
} else {
let fcr = &self.regs.flt3.fcr;
let cr1 = &self.regs.flt3.cr1;
}
}
fcr.modify(|_, w| unsafe {
w.ford().bits(self.config.filter_order as u8);
w.fosr().bits(self.config.filter_oversampling_ratio - 1);
w.iosr().bits(self.config.integrator_oversampling_ratio - 1)
});
cr1.modify(|_, w| unsafe {
w.rcont().bit(self.config.continuous != Continuous::OneShot);
w.fast()
.bit(self.config.continuous == Continuous::ContinuousFastMode);
w.rch().bits(channel as u8);
w.dfen().set_bit()
});
}
}
// Channel y (y=0..7) is enabled by setting CHEN=1 in the DFSDM_CHyCFGR1 register.
// Once the channel is enabled, it receives serial data from the external Σ∆ modulator or
// parallel internal data sources (ADCs or CPU/DMA wire from memory).
// Note that we must set some settings like `dtrbs` before enabling the channel.
assert!(self.config.offset <= (1 << 24));
match channel {
DfsdmChannel::C0 => unsafe {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cfgr1 = &self.regs.ch0cfgr1;
let cfgr2 = &self.regs.ch0cfgr2;
} else if #[cfg(any(feature = "l4"))] {
let cfgr1 = &self.regs.chcfg0r1;
let cfgr2 = &self.regs.chcfg0r2;
} else {
let cfgr1 = &self.regs.ch0.cfgr1;
let cfgr2 = &self.regs.ch0.cfgr2;
}
}
cfgr2.modify(|_, w| {
w.dtrbs().bits(self.config.right_shift_bits);
w.offset().bits(self.config.offset)
});
cfgr1.modify(|_, w| {
w.spicksel().bits(self.config.spi_clock as u8);
w.chen().set_bit()
});
},
DfsdmChannel::C1 => unsafe {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cfgr1 = &self.regs.ch1cfgr1;
let cfgr2 = &self.regs.ch1cfgr2;
} else if #[cfg(any(feature = "l4"))] {
let cfgr1 = &self.regs.chcfg1r1;
let cfgr2 = &self.regs.chcfg1r2;
} else {
let cfgr1 = &self.regs.ch1.cfgr1;
let cfgr2 = &self.regs.ch1.cfgr2;
}
}
cfgr2.modify(|_, w| {
w.dtrbs().bits(self.config.right_shift_bits);
w.offset().bits(self.config.offset)
});
cfgr1.modify(|_, w| {
w.spicksel().bits(self.config.spi_clock as u8);
w.chen().set_bit()
});
},
DfsdmChannel::C2 => unsafe {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cfgr1 = &self.regs.ch2cfgr1;
let cfgr2 = &self.regs.ch2cfgr2;
} else if #[cfg(any(feature = "l4"))] {
let cfgr1 = &self.regs.chcfg3r1;
let cfgr2 = &self.regs.chcfg3r2;
} else {
let cfgr1 = &self.regs.ch2.cfgr1;
let cfgr2 = &self.regs.ch2.cfgr2;
}
}
cfgr2.modify(|_, w| {
w.dtrbs().bits(self.config.right_shift_bits);
w.offset().bits(self.config.offset)
});
cfgr1.modify(|_, w| {
w.spicksel().bits(self.config.spi_clock as u8);
w.chen().set_bit()
});
},
DfsdmChannel::C3 => unsafe {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cfgr1 = &self.regs.ch3cfgr1;
let cfgr2 = &self.regs.ch3cfgr2;
} else if #[cfg(any(feature = "l4"))] {
let cfgr1 = &self.regs.chcfg3r1;
let cfgr2 = &self.regs.chcfg3r2;
} else {
let cfgr1 = &self.regs.ch3.cfgr1;
let cfgr2 = &self.regs.ch3.cfgr2;
}
}
cfgr2.modify(|_, w| {
w.dtrbs().bits(self.config.right_shift_bits);
w.offset().bits(self.config.offset)
});
cfgr1.modify(|_, w| {
w.spicksel().bits(self.config.spi_clock as u8);
w.chen().set_bit()
});
},
DfsdmChannel::C4 => unsafe {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cfgr1 = &self.regs.ch4cfgr1;
let cfgr2 = &self.regs.ch4cfgr2;
} else if #[cfg(any(feature = "l4"))] {
let cfgr1 = &self.regs.chcfg4r1;
let cfgr2 = &self.regs.chcfg4r2;
} else {
let cfgr1 = &self.regs.ch4.cfgr1;
let cfgr2 = &self.regs.ch4.cfgr2;
}
}
cfgr2.modify(|_, w| {
w.dtrbs().bits(self.config.right_shift_bits);
w.offset().bits(self.config.offset)
});
cfgr1.modify(|_, w| {
w.spicksel().bits(self.config.spi_clock as u8);
w.chen().set_bit()
});
},
DfsdmChannel::C5 => unsafe {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cfgr1 = &self.regs.ch5cfgr1;
let cfgr2 = &self.regs.ch5cfgr2;
} else if #[cfg(any(feature = "l4"))] {
let cfgr1 = &self.regs.chcfg5r1;
let cfgr2 = &self.regs.chcfg5r2;
} else {
let cfgr1 = &self.regs.ch5.cfgr1;
let cfgr2 = &self.regs.ch5.cfgr2;
}
}
cfgr2.modify(|_, w| {
w.dtrbs().bits(self.config.right_shift_bits);
w.offset().bits(self.config.offset)
});
cfgr1.modify(|_, w| {
w.spicksel().bits(self.config.spi_clock as u8);
w.chen().set_bit()
});
},
DfsdmChannel::C6 => unsafe {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cfgr1 = &self.regs.ch6cfgr1;
let cfgr2 = &self.regs.ch6cfgr2;
} else if #[cfg(any(feature = "l4"))] {
let cfgr1 = &self.regs.chcfg6r1;
let cfgr2 = &self.regs.chcfg6r2;
} else {
let cfgr1 = &self.regs.ch6.cfgr1;
let cfgr2 = &self.regs.ch6.cfgr2;
}
}
cfgr2.modify(|_, w| {
w.dtrbs().bits(self.config.right_shift_bits);
w.offset().bits(self.config.offset)
});
cfgr1.modify(|_, w| {
w.spicksel().bits(self.config.spi_clock as u8);
w.chen().set_bit()
});
},
DfsdmChannel::C7 => unsafe {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cfgr1 = &self.regs.ch7cfgr1;
let cfgr2 = &self.regs.ch7cfgr2;
} else if #[cfg(any(feature = "l4"))] {
let cfgr1 = &self.regs.chcfg7r1;
let cfgr2 = &self.regs.chcfg7r2;
} else {
let cfgr1 = &self.regs.ch7.cfgr1;
let cfgr2 = &self.regs.ch7.cfgr2;
}
}
cfgr2.modify(|_, w| {
w.dtrbs().bits(self.config.right_shift_bits);
w.offset().bits(self.config.offset)
});
cfgr1.modify(|_, w| {
w.spicksel().bits(self.config.spi_clock as u8);
w.chen().set_bit()
});
},
}
}
/// Disables the DFSDM peripheral.
/// By clearing DFEN, any conversion which may be in progress is immediately stopped and
/// FLTx is put into stop mode. All register settings remain unchanged except
/// FLTxAWSR and FLTxISR (which are reset).
pub fn disable_filter(&mut self, filter: Filter) {
match filter {
Filter::F0 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr1 = &self.regs.flt0cr1;
} else if #[cfg(any(feature = "l4"))] {
let cr1 = &self.regs.dfsdm0_cr1;
} else {
let cr1 = &self.regs.flt0.cr1;
}
}
cr1.modify(|_, w| w.dfen().clear_bit())
}
#[cfg(feature = "l4x6")]
Filter::F1 => (),
#[cfg(not(feature = "l4x6"))]
Filter::F1 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr1 = &self.regs.flt1cr1;
} else if #[cfg(any(feature = "l4"))] {
// let cr1 = &self.regs.dfsdm1_cr1;
} else {
let cr1 = &self.regs.flt1.cr1;
}
}
cr1.modify(|_, w| w.dfen().clear_bit())
}
Filter::F2 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr1 = &self.regs.flt2cr1;
} else if #[cfg(any(feature = "l4"))] {
let cr1 = &self.regs.dfsdm2_cr1;
} else {
let cr1 = &self.regs.flt2.cr1;
}
}
cr1.modify(|_, w| w.dfen().clear_bit())
}
Filter::F3 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr1 = &self.regs.flt3cr1;
} else if #[cfg(any(feature = "l4"))] {
let cr1 = &self.regs.dfsdm3_cr1;
} else {
let cr1 = &self.regs.flt3.cr1;
}
}
cr1.modify(|_, w| w.dfen().clear_bit())
}
}
}
/// Configure for PDM microphone(s). Configures the left channel as the `channel` argument here,
/// and the right channel as `channel` - 1. H742 RM, section 30.4.4
pub fn setup_pdm_mics(&mut self, channel: DfsdmChannel) {
// Configuration of serial channels for PDM microphone input:
// • PDM microphone signals (data, clock) will be connected to DFSDM input serial channel
// y (DATINy, CKOUT) pins.
// (Handled by hardware connections and GPIO config)
match channel {
DfsdmChannel::C0 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cfgr1 = &self.regs.ch0cfgr1;
let cfgr1b = &self.regs.ch7cfgr1;
} else if #[cfg(any(feature = "l4"))] {
let cfgr1 = &self.regs.chcfg0r1;
let cfgr1b = &self.regs.chcfg7r1;
} else {
let cfgr1 = &self.regs.ch0.cfgr1;
let cfgr1b = &self.regs.ch7.cfgr1;
}
}
cfgr1.modify(|_, w| unsafe {
// • Channel y will be configured: CHINSEL = 0 (input from given channel pins: DATINy,
// CKINy).
w.chinsel().clear_bit();
// • Channel y: SITP[1:0] = 0 (rising edge to strobe data) => left audio channel on channel
// y.
w.sitp().bits(0)
});
cfgr1b.modify(|_, w| unsafe {
// • Channel (y-1) (modulo 8) will be configured: CHINSEL = 1 (input from the following
// channel ((y-1)+1) pins: DATINy, CKINy).
w.chinsel().set_bit();
// • Channel (y-1): SITP[1:0] = 1 (falling edge to strobe data) => right audio channel on
// channel y-1.
w.sitp().bits(1)
});
}
DfsdmChannel::C1 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cfgr1 = &self.regs.ch1cfgr1;
let cfgr1b = &self.regs.ch0cfgr1;
} else if #[cfg(any(feature = "l4"))] {
let cfgr1 = &self.regs.chcfg1r1;
let cfgr1b = &self.regs.chcfg0r1;
} else {
let cfgr1 = &self.regs.ch1.cfgr1;
let cfgr1b = &self.regs.ch0.cfgr1;
}
}
cfgr1.modify(|_, w| unsafe {
w.chinsel().clear_bit();
w.sitp().bits(0)
});
cfgr1b.modify(|_, w| unsafe {
w.chinsel().set_bit();
w.sitp().bits(1)
});
}
DfsdmChannel::C2 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cfgr1 = &self.regs.ch2cfgr1;
let cfgr1b = &self.regs.ch1cfgr1;
} else if #[cfg(any(feature = "l4"))] {
let cfgr1 = &self.regs.chcfg2r1;
let cfgr1b = &self.regs.chcfg1r1;
} else {
let cfgr1 = &self.regs.ch2.cfgr1;
let cfgr1b = &self.regs.ch1.cfgr1;
}
}
cfgr1.modify(|_, w| unsafe {
w.chinsel().clear_bit();
w.sitp().bits(0)
});
cfgr1b.modify(|_, w| unsafe {
w.chinsel().set_bit();
w.sitp().bits(1)
});
}
DfsdmChannel::C3 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cfgr1 = &self.regs.ch3cfgr1;
let cfgr1b = &self.regs.ch2cfgr1;
} else if #[cfg(any(feature = "l4"))] {
let cfgr1 = &self.regs.chcfg3r1;
let cfgr1b = &self.regs.chcfg2r1;
} else {
let cfgr1 = &self.regs.ch3.cfgr1;
let cfgr1b = &self.regs.ch2.cfgr1;
}
}
cfgr1.modify(|_, w| unsafe {
w.chinsel().clear_bit();
w.sitp().bits(0)
});
cfgr1b.modify(|_, w| unsafe {
w.chinsel().set_bit();
w.sitp().bits(1)
});
}
_ => unimplemented!(),
}
// • Two DFSDM DfsdmChannels will be assigned to channel y and channel (y-1) (to DfsdmChannel left and
// right channels from PDM microphone).
}
/// Initiate a converssion. See H742 RM, section 30.4.15: Launching conversions
pub fn start_conversion(&self, filter: Filter) {
// todo: set up via interrupts/DMA/separate reading adn conversion etc
// todo: regular vs injected conversions
// Regular conversions can be launched using the following methods:
// • Software: by writing ‘1’ to RSWSTART in the FLTxCR1 register.
match filter {
Filter::F0 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr1 = &self.regs.flt0cr1;
} else if #[cfg(any(feature = "l4"))] {
let cr1 = &self.regs.dfsdm0_cr1;
} else {
let cr1 = &self.regs.flt0.cr1;
}
}
cr1.modify(|_, w| w.rswstart().set_bit())
}
#[cfg(feature = "l4x6")]
Filter::F1 => (),
#[cfg(not(feature = "l4x6"))]
Filter::F1 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr1 = &self.regs.flt1cr1;
} else if #[cfg(any(feature = "l4"))] {
// let cr1 = ®s.dfsdm1_cr1;
} else {
let cr1 = &self.regs.flt1.cr1;
}
}
cr1.modify(|_, w| w.rswstart().set_bit())
}
Filter::F2 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr1 = &self.regs.flt2cr1;
} else if #[cfg(any(feature = "l4"))] {
let cr1 = &self.regs.dfsdm2_cr1;
} else {
let cr1 = &self.regs.flt2.cr1;
}
}
cr1.modify(|_, w| w.rswstart().set_bit())
}
Filter::F3 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr1 = &self.regs.flt3cr1;
} else if #[cfg(any(feature = "l4"))] {
let cr1 = &self.regs.dfsdm3_cr1;
} else {
let cr1 = &self.regs.flt3.cr1;
}
}
cr1.modify(|_, w| w.rswstart().set_bit())
}
}
// • Synchronous with FLT0 if RSYNC=1: for FLTx (x>0), a regular
// conversion is automatically launched when in FLT0; a regular conversion is
// started by software (RSWSTART=1 in FLT0CR2 register). Each regular
// conversion in FLTx (x>0) is always executed according to its local
// configuration settings (RCONT, RCH, etc.).
// Only one regular conversion can be pending or ongoing at a given time. Thus, any request
// to launch a regular conversion is ignored if another request for a regular conversion has
// already been issued but not yet completed. A regular conversion can be pending if it was
// interrupted by an injected conversion or if it was started while an injected conversion was in
// progress. This pending regular conversion is then delayed and is performed when all
// injected conversion are finished. Any delayed regular conversion is signalized by RPEND bit
// in FLTxRDATAR register.
}
/// Initiate an injected conversion. See H742 RM, section 30.4.15: Launching conversions
pub fn start_injected_conversion(&self, filter: Filter) {
// Injected conversions can be launched using the following methods:
// • Software: writing ‘1’ to JSWSTART in the FLTxCR1 register.
match filter {
Filter::F0 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr1 = &self.regs.flt0cr1;
} else if #[cfg(any(feature = "l4"))] {
let cr1 = &self.regs.dfsdm0_cr1;
}else {
let cr1 = &self.regs.flt0.cr1;
}
}
cr1.modify(|_, w| w.jswstart().set_bit())
}
#[cfg(feature = "l4x6")]
Filter::F1 => (),
#[cfg(not(feature = "l4x6"))]
Filter::F1 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr1 = &self.regs.flt1cr1;
} else if #[cfg(any(feature = "l4"))] {
// let cr1 = &self.regs.dfsdm1_cr1;
} else {
let cr1 = &self.regs.flt1.cr1;
}
}
cr1.modify(|_, w| w.jswstart().set_bit())
}
Filter::F2 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr1 = &self.regs.flt2cr1;
} else if #[cfg(any(feature = "l4"))] {
let cr1 = &self.regs.dfsdm2_cr1;
} else {
let cr1 = &self.regs.flt2.cr1;
}
}
cr1.modify(|_, w| w.jswstart().set_bit())
}
Filter::F3 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr1 = &self.regs.flt3cr1;
} else if #[cfg(any(feature = "l4"))] {
let cr1 = &self.regs.dfsdm3_cr1;
} else {
let cr1 = &self.regs.flt3.cr1;
}
}
cr1.modify(|_, w| w.jswstart().set_bit())
}
}
// • Trigger: JEXTSEL[4:0] selects the trigger signal while JEXTEN activates the trigger
// and selects the active edge at the same time (see the FLTxCR1 register).
// • Synchronous with FLT0 if JSYNC=1: for FLTx (x>0), an injected
// conversion is automatically launched when in FLT0; the injected conversion is
// started by software (JSWSTART=1 in FLT0CR2 register). Each injected
// conversion in FLTx (x>0) is always executed according to its local
// configuration settings (JSCAN, JCHG, etc.).
// If the scan conversion is enabled (bit JSCAN=1) then, each time an injected conversion is
// triggered, all of the selected channels in the injected group (JCHG[7:0] bits in
// FLTxJCHGR register) are converted sequentially, starting with the lowest channel
// (channel 0, if selected).
// If the scan conversion is disabled (bit JSCAN=0) then, each time an injected conversion is
// triggered, only one of the selected channels in the injected group (JCHG[7:0] bits in
// FLTxJCHGR register) is converted and the channel selection is then moved to the
// next selected channel. Writing to the JCHG[7:0] bits when JSCAN=0 sets the channel
// selection to the lowest selected injected channel.
// Only one injected conversion can be ongoing at a given time. Thus, any request to launch
// an injected conversion is ignored if another request for an injected conversion has already
// been issued but not yet completed.
}
/// Read regular conversion data from the FLTxRDATAR register. Suitable for use after a conversion is complete.
/// "Signed data format in registers: Data is in a signed format in registers for final output data,
/// analog watchdog, extremes detector, offset correction. The msb of output data word
/// represents the sign of value (two’s complement format)."
///
/// See H742 RM, section 30.4.13: Data unitblock for details.
/// "The right bit-shift of final data is performed in this module because the final data width is 24-
/// bit and data coming from the processing path can be up to 32 bits. This right bit-shift is
/// configurable in the range 0-31 bits for each selected input channel (see DTRBS[4:0] bits in
/// DFSDM_CHyCFGR2 register). The right bit-shift is rounding the result to nearest integer
/// value. The sign of shifted result is maintained - to have valid 24-bit signed format of result
/// data.
/// In the next step, an offset correction of the result is performed. The offset correction value
/// (OFFSET[23:0] stored in register DFSDM_CHyCFGR2) is subtracted from the output data
/// for a given channel. Data in the OFFSET[23:0] field is set by software by the appropriate
/// calibration routine."
pub fn read(&self, filter: Filter) -> i32 {
match filter {
// We read the whole register, then convert to i32, then shift right, so we can take
// advantage of the sign bit being in the same place in the data register as for 32-bit
// integers in Rust. (Data is the left 24 most bits of the register. The shift discards
// the other fields).
Filter::F0 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let rdatar = &self.regs.flt0rdatar;
} else if #[cfg(any(feature = "l4"))] {
let rdatar = &self.regs.dfsdm0_rdatar;
} else {
let rdatar = &self.regs.flt0.rdatar;
}
}
(rdatar.read().bits() as i32) >> 8
}
#[cfg(feature = "l4x6")]
Filter::F1 => 0,
#[cfg(not(feature = "l4x6"))]
Filter::F1 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let rdatar = &self.regs.flt1rdatar;
} else if #[cfg(any(feature = "l4"))] {
// let rdatar = &self.regs.dfsdm1_rdatar;
} else {
let rdatar = &self.regs.flt1.rdatar;
}
}
(rdatar.read().bits() as i32) >> 8
}
Filter::F2 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let rdatar = &self.regs.flt2rdatar;
} else if #[cfg(any(feature = "l4"))] {
let rdatar = &self.regs.dfsdm2_rdatar;
} else {
let rdatar = &self.regs.flt2.rdatar;
}
}
(rdatar.read().bits() as i32) >> 8
}
Filter::F3 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let rdatar = &self.regs.flt3rdatar;
} else if #[cfg(any(feature = "l4"))] {
let rdatar = &self.regs.dfsdm3_rdatar;
} else {
let rdatar = &self.regs.flt3.rdatar;
}
}
(rdatar.read().bits() as i32) >> 8
}
}
}
/// Read injected conversion data from the FLTxJDATAR register.
/// Suitable for use after a conversion is complete.
pub fn read_injected(&self, filter: Filter) -> i32 {
match filter {
Filter::F0 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let jdatar = &self.regs.flt0jdatar;
} else if #[cfg(any(feature = "l4"))] {
let jdatar = &self.regs.dfsdm0_jdatar;
} else {
let jdatar = &self.regs.flt0.jdatar;
}
}
(jdatar.read().bits() as i32) >> 8
}
#[cfg(feature = "l4x6")]
Filter::F1 => 0,
#[cfg(not(feature = "l4x6"))]
Filter::F1 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let jdatar = &self.regs.flt1jdatar;
} else if #[cfg(any(feature = "l4"))] {
// let jdatar = &self.regs.dfsdm1_jdatar;
} else {
let jdatar = &self.regs.flt1.jdatar;
}
}
(jdatar.read().bits() as i32) >> 8
}
Filter::F2 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let jdatar = &self.regs.flt2jdatar;
} else if #[cfg(any(feature = "l4"))] {
let jdatar = &self.regs.dfsdm2_jdatar;
} else {
let jdatar = &self.regs.flt2.jdatar;
}
}
(jdatar.read().bits() as i32) >> 8
}
Filter::F3 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let jdatar = &self.regs.flt3jdatar;
} else if #[cfg(any(feature = "l4"))] {
let jdatar = &self.regs.dfsdm3_jdatar;
} else {
let jdatar = &self.regs.flt3.jdatar;
}
}
(jdatar.read().bits() as i32) >> 8
}
}
// todo: JDATACH to know which channel was converted??
// todo isn't this implied to the register we choose to sue?
}
/// Read data from SAI with DMA. H743 RM, section 30.6: DFSDM DMA transfer
/// To decrease the CPU intervention, conversions can be transferred into memory using a
/// DMA transfer. A DMA transfer for injected conversions is enabled by setting bit JDMAEN=1
/// in FLTxCR1 register. A DMA transfer for regular conversions is enabled by setting
/// bit RDMAEN=1 in FLTxCR1 register.
/// Note: With a DMA transfer, the interrupt flag is automatically cleared at the end of the injected or
/// regular conversion (JEOCF or REOCF bit in FLTxISR register) because DMA is
/// reading FLTxJDATAR or FLTxRDATAR register
///
/// Note that this reads the entire rdatar register into memory, not just the rdata field.
/// You need to shift the result 8 bits to the result after reading the values from memory
/// to discard the other fields. (The integer signing is unchanged, since the 24-bit integer data
/// is aligned to the left of the 32-bit register, which maps to an `i32` here.)
#[cfg(not(any(feature = "f4", feature = "l552")))]
pub unsafe fn read_dma(
&mut self,
buf: &mut [i32],
filter: Filter,
dma_channel: DmaChannel,
channel_cfg: ChannelCfg,
dma_periph: dma::DmaPeriph,
// dma: &mut Dma<D>,
) {
// where
// D: Deref<Target = dma_p::RegisterBlock>,
// {
let (ptr, len) = (buf.as_mut_ptr(), buf.len());
#[cfg(feature = "f3")]
let dma_channel = match filter {
Filter::F0 => DmaInput::Dfsdm1F0.dma1_channel(),
Filter::F1 => DmaInput::Dfsdm1F1.dma1_channel(),
};
#[cfg(feature = "l4")]
match dma_periph {
dma::DmaPeriph::Dma1 => {
let mut regs = unsafe { &(*DMA1::ptr()) };
match filter {
Filter::F0 => dma::channel_select(&mut regs, DmaInput::Dfsdm1F0),
Filter::F1 => dma::channel_select(&mut regs, DmaInput::Dfsdm1F1),
Filter::F2 => dma::channel_select(&mut regs, DmaInput::Dfsdm1F2),
Filter::F3 => dma::channel_select(&mut regs, DmaInput::Dfsdm1F3),
};
}
dma::DmaPeriph::Dma2 => {
let mut regs = unsafe { &(*pac::DMA2::ptr()) };
match filter {
Filter::F0 => dma::channel_select(&mut regs, DmaInput::Dfsdm1F0),
Filter::F1 => dma::channel_select(&mut regs, DmaInput::Dfsdm1F1),
Filter::F2 => dma::channel_select(&mut regs, DmaInput::Dfsdm1F2),
Filter::F3 => dma::channel_select(&mut regs, DmaInput::Dfsdm1F3),
};
}
}
match filter {
Filter::F0 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr1 = &self.regs.flt0cr1;
} else if #[cfg(any(feature = "l4"))] {
let cr1 = &self.regs.dfsdm0_cr1;
} else {
let cr1 = &self.regs.flt0.cr1;
}
}
cr1.modify(|_, w| w.rdmaen().set_bit())
}
#[cfg(feature = "l4x6")]
Filter::F1 => (),
#[cfg(not(feature = "l4x6"))]
Filter::F1 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr1 = &self.regs.flt1cr1;
} else if #[cfg(any(feature = "l4"))] {
// let cr1 = &self.regs.dfsdm1_cr1;
} else {
let cr1 = &self.regs.flt1.cr1;
}
}
cr1.modify(|_, w| w.rdmaen().set_bit())
}
Filter::F2 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr1 = &self.regs.flt2cr1;
} else if #[cfg(any(feature = "l4"))] {
let cr1 = &self.regs.dfsdm2_cr1;
} else {
let cr1 = &self.regs.flt2.cr1;
}
}
cr1.modify(|_, w| w.rdmaen().set_bit())
}
Filter::F3 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr1 = &self.regs.flt3cr1;
} else if #[cfg(any(feature = "l4"))] {
let cr1 = &self.regs.dfsdm3_cr1;
} else {
let cr1 = &self.regs.flt3.cr1;
}
}
cr1.modify(|_, w| w.rdmaen().set_bit())
}
}
let periph_addr = match filter {
Filter::F0 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let rdatar = &self.regs.flt0rdatar;
} else if #[cfg(any(feature = "l4"))] {
let rdatar = &self.regs.dfsdm0_rdatar;
} else {
let rdatar = &self.regs.flt0.rdatar;
}
}
&rdatar as *const _ as u32
}
#[cfg(feature = "l4x6")]
Filter::F1 => 0,
#[cfg(not(feature = "l4x6"))]
Filter::F1 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let rdatar = &self.regs.flt1rdatar;
} else if #[cfg(any(feature = "l4"))] {
// let rdatar = &self.regs.dfsdm1_rdatar;
} else {
let rdatar = &self.regs.flt1.rdatar;
}
}
&rdatar as *const _ as u32
}
Filter::F2 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let rdatar = &self.regs.flt2rdatar;
} else if #[cfg(any(feature = "l4"))] {
let rdatar = &self.regs.dfsdm2_rdatar;
} else {
let rdatar = &self.regs.flt2.rdatar;
}
}
&rdatar as *const _ as u32
}
Filter::F3 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let rdatar = &self.regs.flt3rdatar;
} else if #[cfg(any(feature = "l4"))] {
let rdatar = &self.regs.dfsdm3_rdatar;
} else {
let rdatar = &self.regs.flt3.rdatar;
}
}
&rdatar as *const _ as u32
}
};
// todo: Injected support. Should just need to add the option flag and enable `jdmaen()` bits
// todo instead of `rdmaen()`, and use the `jdatar` periph addr.
// todo: Do we want this? If so, where?
self.start_conversion(filter);
#[cfg(feature = "h7")]
let len = len as u32;
#[cfg(not(feature = "h7"))]
let len = len as u16;
match dma_periph {
dma::DmaPeriph::Dma1 => {
let mut regs = unsafe { &(*DMA1::ptr()) };
dma::cfg_channel(
&mut regs,
dma_channel,
periph_addr,
ptr as u32,
len,
dma::Direction::ReadFromPeriph,
dma::DataSize::S32, // For 24 bits
dma::DataSize::S32,
channel_cfg,
);
}
dma::DmaPeriph::Dma2 => {
let mut regs = unsafe { &(*pac::DMA2::ptr()) };
dma::cfg_channel(
&mut regs,
dma_channel,
periph_addr,
ptr as u32,
len,
dma::Direction::ReadFromPeriph,
dma::DataSize::S32, // For 24 bits
dma::DataSize::S32,
channel_cfg,
);
}
}
}
/// Enable a specific type of interrupt. See H743 RM, section 30.5: DFSDM interrupts
pub fn enable_interrupt(&mut self, interrupt_type: DfsdmInterrupt, channel: Filter) {
// todo: Macro to reduce DRY here?
match channel {
Filter::F0 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr2 = &self.regs.flt0cr2;
} else if #[cfg(any(feature = "l4"))] {
let cr2 = &self.regs.dfsdm0_cr2;
} else {
let cr2 = &self.regs.flt0.cr2;
}
}
cr2.modify(|_, w| match interrupt_type {
DfsdmInterrupt::EndOfInjectedConversion => w.jeocie().set_bit(),
DfsdmInterrupt::EndOfConversion => w.reocie().set_bit(),
DfsdmInterrupt::DataOverrunInjected => w.jovrie().set_bit(),
DfsdmInterrupt::DataOverrun => w.rovrie().set_bit(),
DfsdmInterrupt::AnalogWatchdog => w.awdie().set_bit(),
DfsdmInterrupt::ShortCircuit => w.scdie().set_bit(),
DfsdmInterrupt::ChannelClockAbsense => w.ckabie().set_bit(),
});
}
#[cfg(feature = "l4x6")]
Filter::F1 => (),
#[cfg(not(feature = "l4x6"))]
Filter::F1 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr2 = &self.regs.flt1cr2;
} else if #[cfg(any(feature = "l4"))] {
// let cr2 = &self.regs.dfsdm1_cr2;
} else {
let cr2 = &self.regs.flt1.cr2;
}
}
cr2.modify(|_, w| match interrupt_type {
DfsdmInterrupt::EndOfInjectedConversion => w.jeocie().set_bit(),
DfsdmInterrupt::EndOfConversion => w.reocie().set_bit(),
DfsdmInterrupt::DataOverrunInjected => w.jovrie().set_bit(),
DfsdmInterrupt::DataOverrun => w.rovrie().set_bit(),
DfsdmInterrupt::AnalogWatchdog => w.awdie().set_bit(),
DfsdmInterrupt::ShortCircuit => w.scdie().set_bit(),
DfsdmInterrupt::ChannelClockAbsense => w.ckabie().set_bit(),
});
}
Filter::F2 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr2 = &self.regs.flt1cr2;
} else if #[cfg(any(feature = "l4"))] {
let cr2 = &self.regs.dfsdm2_cr2;
} else {
let cr2 = &self.regs.flt2.cr2;
}
}
cr2.modify(|_, w| match interrupt_type {
DfsdmInterrupt::EndOfInjectedConversion => w.jeocie().set_bit(),
DfsdmInterrupt::EndOfConversion => w.reocie().set_bit(),
DfsdmInterrupt::DataOverrunInjected => w.jovrie().set_bit(),
DfsdmInterrupt::DataOverrun => w.rovrie().set_bit(),
DfsdmInterrupt::AnalogWatchdog => w.awdie().set_bit(),
DfsdmInterrupt::ShortCircuit => w.scdie().set_bit(),
DfsdmInterrupt::ChannelClockAbsense => w.ckabie().set_bit(),
});
}
Filter::F3 => {
cfg_if! {
if #[cfg(any(feature = "l5"))] {
let cr2 = &self.regs.flt3cr2;
} else if #[cfg(any(feature = "l4"))] {
let cr2 = &self.regs.dfsdm3_cr2;
} else {
let cr2 = &self.regs.flt3.cr2;
}
}
cr2.modify(|_, w| match interrupt_type {
DfsdmInterrupt::EndOfInjectedConversion => w.jeocie().set_bit(),
DfsdmInterrupt::EndOfConversion => w.reocie().set_bit(),
DfsdmInterrupt::DataOverrunInjected => w.jovrie().set_bit(),
DfsdmInterrupt::DataOverrun => w.rovrie().set_bit(),
DfsdmInterrupt::AnalogWatchdog => w.awdie().set_bit(),
DfsdmInterrupt::ShortCircuit => w.scdie().set_bit(),
DfsdmInterrupt::ChannelClockAbsense => w.ckabie().set_bit(),
});
}
}
}
// todo: write_dma
/// Clears the interrupt pending flag for a specific type of interrupt. Note that to clear
/// EndofInjectedConversion, or EndOfConversion interrupt,s read the FLTxJDATAR or FLTxRDATAR
/// registers respectively.
pub fn clear_interrupt(&mut self, interrupt_type: DfsdmInterrupt, channel: Filter) {
// todo figure out what's wrong and put back.
// match channel {
// DfsdmChannel::F0 => {
// self.regs.flt0icr.write(|w| match interrupt_type {
// DfsdmInterrupt::EndOfInjectedConversion => (),
// DfsdmInterrupt::EndOfConversion => (),
// DfsdmInterrupt::DataOverrunInjected => w.clrjovrf.set_bit(),
// DfsdmInterrupt::DataOverrun => w.clrrovrf().set_bit(),
// // todo: Possibly clrawltf bit for low ADW clear!
// DfsdmInterrupt::AnalogWatchdog => w.clrawhtf().set_bit(),
// DfsdmInterrupt::ShortCircuit => w.clrscdf().set_bit(),
// DfsdmInterrupt::ChannelClockAbsense => w.clrckabf().set_bit(),
// });
// }
// DfsdmChannel::F1 => {
// self.regs.flt1icr.write(|w| match interrupt_type {
// DfsdmInterrupt::EndOfInjectedConversion => (),
// DfsdmInterrupt::EndOfConversion => (),
// DfsdmInterrupt::DataOverrunInjected => w.clrjovrf().set_bit(),
// DfsdmInterrupt::DataOverrun => w.clrrovrf().set_bit(),
// DfsdmInterrupt::AnalogWatchdog => w.clrawhtf().set_bit(),
// DfsdmInterrupt::ShortCircuit => w.clrscdf().set_bit(),
// DfsdmInterrupt::ChannelClockAbsense => w.clrckabf().set_bit(),
// });
// }
// DfsdmChannel::F2 => {
// self.regs.flt2icr.write(|w| match interrupt_type {
// DfsdmInterrupt::EndOfInjectedConversion => (),
// DfsdmInterrupt::EndOfConversion => (),
// DfsdmInterrupt::DataOverrunInjected => w.clrjovrf().set_bit(),
// DfsdmInterrupt::DataOverrun => w.clrrovrf().set_bit(),
// DfsdmInterrupt::AnalogWatchdog => w.clrawhtf().set_bit(),
// DfsdmInterrupt::ShortCircuit => w.clrscdf().set_bit(),
// DfsdmInterrupt::ChannelClockAbsense => w.clrckabf().set_bit(),
// });
// }
// DfsdmChannel::F3 => {
// self.regs.flt3icr.write(|w| match interrupt_type {
// DfsdmInterrupt::EndOfInjectedConversion => (),
// DfsdmInterrupt::EndOfConversion => (),
// DfsdmInterrupt::DataOverrunInjected => w.clrjovrf().set_bit(),
// DfsdmInterrupt::DataOverrun => w.clrrovrf().set_bit(),
// DfsdmInterrupt::AnalogWatchdog => w.clrawhtf().set_bit(),
// DfsdmInterrupt::ShortCircuit => w.clrscdf().set_bit(),
// DfsdmInterrupt::ChannelClockAbsense => w.clrckabf().set_bit(),
// });
// }
// }
}
}