1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
//! [![Documentation](https://docs.rs/ste/badge.svg)](https://docs.rs/ste)
//! [![Crates](https://img.shields.io/crates/v/ste.svg)](https://crates.io/crates/ste)
//! [![Actions Status](https://github.com/udoprog/rotary/workflows/Rust/badge.svg)](https://github.com/udoprog/rotary/actions)
//!
//! A single-threaded executor with some tricks up its sleeve.
//!
//! This was primarily written for use in [rotary] as a low-latency way of
//! interacting with a single background thread for audio-related purposes, but
//! is otherwise a general purpose library that can be used by anyone.
//!
//! > **Soundness Warning:** This crate uses a fair bit of **unsafe**. Some of
//! > the tricks employed needs to be rigirously sanity checked for safety
//! > before you can rely on this for production uses.
//!
//! The default way to access the underlying thread is through the [submit]
//! method. This blocks the current thread for the duration of the task allowing
//! the background thread to access variables which are in scope. Like `n`
//! below.
//!
//! ```rust
//! # fn main() -> anyhow::Result<()> {
//! let thread = ste::Thread::new()?;
//!
//! let mut n = 10;
//! thread.submit(|| n += 10)?;
//! assert_eq!(20, n);
//!
//! thread.join()?;
//! # Ok(()) }    
//! ```
//!
//! # Restricting which threads can access data
//!
//! We provide the [Tagged] container. Things stored in this container may
//! *only* be accessed by the thread in which the container was created.
//!
//! It works by associating a tag with the data that is unique to the thread
//! which created it. Any attempt to access the data will check this tag against
//! the tag in the current thread.
//!
//! ```rust,should_panic
//! struct Foo;
//!
//! impl Foo {
//!     fn say_hello(&self) {
//!         println!("Hello World!");
//!     }
//! }
//!
//! # fn main() -> anyhow::Result<()> {
//! let thread = ste::Thread::new()?;
//!
//! let foo = thread.submit(|| ste::Tagged::new(Foo))?;
//! foo.say_hello(); // <- Panics!
//!
//! thread.join()?;
//! # Ok(()) }
//! ```
//!
//! Using it inside of the thread that created it is fine.
//!
//! ```rust
//! # struct Foo;
//! # impl Foo { fn say_hello(&self) { println!("Hello World!"); } }
//! # fn main() -> anyhow::Result<()> {
//! let thread = ste::Thread::new()?;
//!
//! let foo = thread.submit(|| ste::Tagged::new(Foo))?;
//!
//! thread.submit(|| {
//!     foo.say_hello(); // <- OK!
//! })?;
//!
//! thread.join()?;
//! # Ok(()) }
//! ```
//!
//! > There are some other details you need to know relevant to how to use the
//! > [Tagged] container. See its documentation for more.
//!
//! # Known unsafety and soundness issues
//!
//! Below you can find a list of known soundness issues this library currently
//! has.
//!
//! ## Pointers to stack-local addresses
//!
//! In order to efficiently share data between a thread calling [submit] and the
//! background thread, the background thread references a fair bit of
//! stack-local data from the calling thread which involves a fair bit of
//! `unsafe`.
//!
//! While it should be possible to make this use *safe* (as is the hope of this
//! library), it carries a risk that if the background thread were to proceed
//! executing a task that is no longer synchronized properly with a caller of
//! [submit] it might end up referencing data which is either no longer valid
//! (use after free), or contains something else (dirty).
//!
//! ## Soundness issue with tag re-use
//!
//! [Tagged] containers currently use a tag based on the address of a slab of
//! allocated memory that is associated with each [Thread]. If however a
//! [Thread] is shut down, and a new later recreated, there is a slight risk
//! that this might re-use an existing memory address.
//!
//! Memory addresses are quite thankful to use, because they're cheap and quite
//! easy to access. Due to this it might however be desirable to use a generated
//! ID per thread instead which can for example abort a program in case it can't
//! guarantee uniqueness.
//!
//! [submit]: https://docs.rs/ste/0/ste/struct.Thread.html#method.submit
//! [Thread]: https://docs.rs/ste/0/ste/struct.Thread.html
//! [Tagged]: https://docs.rs/ste/0/ste/struct.Tagged.html
//! [rotary]: https://github.com/udoprog/rotary

use parking_lot::{Condvar, Mutex};
use std::io;
use std::mem;
use std::ptr;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::thread;
use thiserror::Error;

#[cfg(test)]
mod tests;

mod parker;
use self::parker::Unparker;

mod tagged;
pub use self::tagged::Tagged;
use self::tagged::{with_tag, Tag};

/// Error raised when we try to interact with a background thread that has
/// panicked.
#[derive(Debug, Error)]
#[error("background thread panicked")]
pub struct Panicked(());

/// The handle for a background thread.
///
/// The background thread can be interacted with in a couple of ways:
/// * [submit][Thread::submit] - for submitted tasks, the call will block until
///   it has been executed on the thread (or the thread has panicked).
/// * [drop][Thread::drop] - for dropping value *on* the background thread. This
///   is necessary for [Tagged] values that requires drop.
///
/// # Examples
///
/// ```rust
/// use std::sync::Arc;
///
/// # fn main() -> anyhow::Result<()> {
/// let thread = Arc::new(ste::Thread::new()?);
/// let mut threads = Vec::new();
///
/// for n in 0..10 {
///     let thread = thread.clone();
///
///     threads.push(std::thread::spawn(move || {
///         thread.submit(move || n)
///     }));
/// }
///
/// let mut result = 0;
///
/// for t in threads {
///     result += t.join().unwrap()?;
/// }
///
/// assert_eq!(result, (0..10).sum());
///
/// // Unwrap the thread.
/// let thread = Arc::try_unwrap(thread).map_err(|_| "unwrap failed").unwrap();
///
/// let value = thread.submit(|| {
///     panic!("Background thread: {:?}", std::thread::current().id());
/// });
///
/// println!("Main thread: {:?}", std::thread::current().id());
/// assert!(value.is_err());
///
/// assert!(thread.join().is_err());
/// # Ok(()) }
/// ```
#[must_use = "The thread should be joined with Thread::join once no longer used, \
    otherwise it will block while being dropped."]
pub struct Thread {
    /// Things that have been submitted for execution on the background thread.
    shared: ptr::NonNull<Shared>,
    /// The handle associated with the background thread.
    handle: Option<thread::JoinHandle<()>>,
}

/// Safety: The handle is both send and sync because it joins the background
/// thread which keeps track of the state of `shared` and cleans it up once it's
/// no longer needed.
unsafe impl Send for Thread {}
unsafe impl Sync for Thread {}

impl Thread {
    /// Construct a default background thread executor.
    ///
    /// These both do the same thing:
    ///
    /// ```rust
    /// # fn main() -> anyhow::Result<()> {
    /// let thread1 = ste::Thread::new()?;
    /// let thread2 = ste::Builder::new().build()?;
    /// # Ok(()) }
    /// ```
    pub fn new() -> io::Result<Self> {
        Builder::new().build()
    }

    /// Submit a task to run on the background thread.
    ///
    /// The call will block until it has been executed on the thread (or the
    /// thread has panicked).
    ///
    /// Because this function blocks until completion, it can safely access
    /// values which are outside of the scope of the provided closure.
    ///
    /// If you however need to store and access things which are `!Sync`, you
    /// can use [Tagged].
    ///
    /// # Examples
    ///
    /// ```rust
    /// # fn main() -> anyhow::Result<()> {
    /// let thread = ste::Thread::new()?;
    ///
    /// let mut n = 10;
    /// thread.submit(|| n += 10)?;
    /// assert_eq!(20, n);
    ///
    /// thread.join()?;
    /// # Ok(()) }    
    /// ```
    pub fn submit<F, T>(&self, task: F) -> Result<T, Panicked>
    where
        F: Send + FnOnce() -> T,
        T: Send,
    {
        let flag = AtomicUsize::new(0);
        let mut storage = None;

        {
            let storage = ptr::NonNull::from(&mut storage);
            let (parker, unparker) = parker::new(storage.as_ptr());

            let mut task = into_task(task, RawSend(storage));

            // Safety: We're constructing a pointer to a local stack location. It
            // will never be null.
            //
            // The transmute is necessary because we're constructing a trait object
            // with a `'static` lifetime.
            let task = unsafe {
                ptr::NonNull::new_unchecked(mem::transmute::<&mut (dyn FnMut(Tag) + Send), _>(
                    &mut task,
                ))
            };
            self.set_state(State::Schedule(Schedule {
                task,
                unparker,
                flag: ptr::NonNull::from(&flag),
            }))?;

            match self.handle.as_ref() {
                Some(handle) => handle.thread().unpark(),
                None => panic!("missing thread handle"),
            }

            // If 0, we know we got here first and have to park until the thread
            // is ready.
            if flag.fetch_add(1, Ordering::AcqRel) == NONE_READY {
                // Safety: we're the only ones controlling these, so we know that
                // they are correctly allocated and who owns what with
                // synchronization.
                parker.park(|| flag.load(Ordering::Relaxed) == BOTH_READY);
            }
        }

        return match storage {
            Some(result) => Ok(result),
            None => Err(Panicked(())),
        };

        fn into_task<F, T>(task: F, storage: RawSend<Option<T>>) -> impl FnMut(Tag) + Send
        where
            F: FnOnce() -> T + Send,
            T: Send,
        {
            let mut task = Some(task);

            move |tag| {
                let RawSend(mut storage) = storage;

                if let Some(task) = task.take() {
                    let output = with_tag(tag, task);

                    // Safety: we're the only one with access to this pointer,
                    // and we know it hasn't been de-allocated yet.
                    unsafe {
                        *storage.as_mut() = Some(output);
                    }
                }
            }
        }
    }

    /// Move the provided `value` onto the background thread and drop it.
    ///
    /// This is necessary for [Tagged] values that needs to be dropped which
    /// would otherwise panic.
    ///
    /// # Examples
    ///
    /// ```rust
    /// // Ensure that `Foo` is both `!Send` and `!Sync`.
    /// struct Foo(*mut ());
    ///
    /// impl Foo {
    ///     fn test(&self) -> u32 {
    ///         42
    ///     }
    /// }
    ///
    /// impl Drop for Foo {
    ///     fn drop(&mut self) {
    ///         println!("Foo was dropped");
    ///     }
    /// }
    ///
    /// # fn main() -> anyhow::Result<()> {
    /// let thread = ste::Thread::new()?;
    ///
    /// let value = thread.submit(|| ste::Tagged::new(Foo(0 as *mut ())))?;
    /// let out = thread.submit(|| value.test())?;
    /// assert_eq!(42, out);
    ///
    /// thread.drop(value)?;
    /// thread.join()?;
    /// # Ok(()) }    
    /// ```
    ///
    /// If we omit the call to [drop][Thread::drop], the above will panic.
    ///
    /// ```rust,should_panic
    /// # struct Foo(*mut ());
    /// # impl Drop for Foo { fn drop(&mut self) {} }
    /// # fn main() -> anyhow::Result<()> {
    /// let thread = ste::Thread::new()?;
    ///
    /// let value = thread.submit(|| ste::Tagged::new(Foo(0 as *mut ())))?;
    ///
    /// thread.join()?;
    /// # Ok(()) }    
    /// ```
    pub fn drop<T>(&self, value: T) -> Result<(), Panicked>
    where
        T: Send,
    {
        self.submit(move || drop(value))?;
        Ok(())
    }

    /// Join the background thread.
    ///
    /// Will block until the background thread is joined.
    ///
    /// This is the clean way to join a background thread, the alternative is to
    /// let [Thread] drop and this will be performed in the drop handler
    /// instead.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # fn main() -> anyhow::Result<()> {
    /// let thread = ste::Thread::new()?;
    ///
    /// let mut n = 10;
    /// thread.submit(|| n += 10)?;
    /// assert_eq!(20, n);
    ///
    /// thread.join()?;
    /// # Ok(()) }    
    /// ```
    pub fn join(mut self) -> Result<(), Panicked> {
        self.inner_join()
    }

    /// Update the shared state.
    ///
    /// This will *not* notify the background thread to allow it to be used in
    /// contexts where the handle has been removed.
    fn set_state(&self, state: State) -> Result<(), Panicked> {
        let mut guard = loop {
            unsafe {
                let mut guard = self.shared.as_ref().state.lock();

                match &*guard {
                    State::Busy | State::Schedule(..) => {
                        self.shared.as_ref().cond.wait(&mut guard);
                        continue;
                    }
                    State::Panicked => {
                        return Err(Panicked(()));
                    }
                    State::Waiting => break guard,
                    State::Join => unreachable!(),
                }
            }
        };

        *guard = state;
        Ok(())
    }

    fn inner_join(&mut self) -> Result<(), Panicked> {
        if let Some(handle) = self.handle.take() {
            self.set_state(State::Join)?;
            handle.thread().unpark();
            return handle.join().map_err(|_| Panicked(()));
        }

        Ok(())
    }

    /// Worker thread.
    fn worker(prelude: Option<Box<Prelude>>, RawSend(shared): RawSend<Shared>) {
        let poison_guard = PoisonGuard { shared };

        if let Some(prelude) = prelude {
            prelude();
        }

        unsafe {
            *shared.as_ref().state.lock() = State::Waiting;
        }

        'outer: loop {
            let mut schedule = loop {
                unsafe {
                    if !shared.as_ref().cond.notify_one() {
                        thread::park();
                    }

                    let mut state = shared.as_ref().state.lock();

                    match mem::replace(&mut *state, State::Waiting) {
                        State::Waiting => continue,
                        State::Schedule(submit) => break submit,
                        _ => break 'outer,
                    }
                }
            };

            let tag = Tag(shared.as_ptr() as usize);
            unsafe { schedule.task.as_mut()(tag) };
        }

        // Forget the guard to disarm the panic.
        mem::forget(poison_guard);

        /// Guard used to mark the state of the executed as "panicked". This is
        /// accomplished by asserting that the only reason this destructor would
        /// be called would be due to an unwinding panic.
        struct PoisonGuard {
            shared: ptr::NonNull<Shared>,
        }

        impl Drop for PoisonGuard {
            fn drop(&mut self) {
                unsafe {
                    let old =
                        mem::replace(&mut *self.shared.as_ref().state.lock(), State::Panicked);
                    // It's not possible for the state to be anything but empty
                    // here, because the worker thread takes the state before
                    // executing user code which might panic.
                    debug_assert!(!matches!(old, State::Panicked));
                    self.shared.as_ref().cond.notify_all();
                }
            }
        }
    }
}

impl Drop for Thread {
    fn drop(&mut self) {
        // Note: we can safely ignore the result, because it will only error in
        // case the background thread has panicked. At which point we're still
        // free to assume it's no longer using the shared state.
        let _ = self.inner_join();

        // Safety: at this point it's guaranteed that we've synchronized with
        // the thread enough that the shared state can be safely deallocated.
        //
        // The background thread is in one of two states:
        // * It has panicked, which means the shared state will not be used any
        //   longer.
        // * It has successfully been joined in. Which has the same
        //   implications.
        unsafe {
            let _ = Box::from_raw(self.shared.as_ptr());
        }
    }
}

/// The builder for a [Thread] which can be configured a bit more.
pub struct Builder {
    prelude: Option<Box<Prelude>>,
}

impl Builder {
    /// Construct a new builder.
    pub fn new() -> Self {
        Self { prelude: None }
    }

    /// Configure a prelude to the [Thread]. This is code that will run just as
    /// the thread is spinning up.
    ///
    /// # Examples
    ///
    /// ```rust
    /// fn say_hello(main_thread: std::thread::ThreadId) {
    ///     println!("Hello from the prelude!");
    ///     assert_ne!(main_thread, std::thread::current().id());
    /// }
    ///
    /// # fn main() -> anyhow::Result<()> {
    /// let main_thread = std::thread::current().id();
    ///
    /// let thread = ste::Builder::new().prelude(move || say_hello(main_thread)).build();
    /// # Ok(()) }
    /// ```
    pub fn prelude<P>(self, prelude: P) -> Self
    where
        P: Fn() + Send + 'static,
    {
        Self {
            prelude: Some(Box::new(prelude)),
        }
    }

    /// Construct the background thread.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # fn main() -> anyhow::Result<()> {
    /// let thread = ste::Builder::new().build()?;
    /// thread.join()?;
    /// # Ok(()) }
    /// ```
    pub fn build(self) -> io::Result<Thread> {
        let shared = ptr::NonNull::from(Box::leak(Box::new(Shared {
            state: Mutex::new(State::Busy),
            cond: Condvar::new(),
        })));

        let prelude = self.prelude;

        let shared2 = RawSend(shared);

        let handle = thread::Builder::new()
            .name(String::from("ste-thread"))
            .spawn(move || Thread::worker(prelude, shared2))?;

        Ok(Thread {
            shared,
            handle: Some(handle),
        })
    }
}

/// Small helper for sending things which are not Send.
struct RawSend<T>(ptr::NonNull<T>);
unsafe impl<T> Send for RawSend<T> {}

/// The state of the executor.
enum State {
    /// The background thread is busy and cannot process tasks yet. The
    /// scheduler starts out in this state, before the prelude has been
    /// executed.
    Busy,
    /// Scheduler is waiting for tasks.
    Waiting,
    /// A task that is expected to be scheduled.
    Schedule(Schedule),
    /// Scheduler has panicked.
    Panicked,
    /// Scheduler is being joined.
    Join,
}

/// A task submitted to the executor.
struct Schedule {
    task: ptr::NonNull<dyn FnMut(Tag) + Send + 'static>,
    unparker: Unparker,
    flag: ptr::NonNull<AtomicUsize>,
}

// The implementation of [Schedule] is safe because it's privately constructed
// inside of this module.
unsafe impl Send for Schedule {}

impl Drop for Schedule {
    fn drop(&mut self) {
        // Safety: We know that the task holding the flag owns the
        // reference.
        if unsafe { self.flag.as_ref().fetch_add(1, Ordering::AcqRel) == NONE_READY } {
            // We got here first, so we know the calling thread won't
            // park since they will see our update. If the calling
            // thread got here before us, the value would be 1.
            return;
        }

        while !self.unparker.unpark_one() {
            thread::yield_now();
        }
    }
}

// Shared state between the worker thread and [Thread].
struct Shared {
    state: Mutex<State>,
    cond: Condvar,
}

/// The type of the prelude function.
type Prelude = dyn Fn() + Send + 'static;

const NONE_READY: usize = 0;
const BOTH_READY: usize = 2;