1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
#![deny(missing_docs)]

use std::cmp::min;
use std::fmt::Debug;
use std::mem;
use std::ops::{Deref, DerefMut, Index};

impl<T> MinStack<T>
where
    T: Clone + Ord + Default,
{
    /// Moves all the elements of `other` into `Self`, leaving other empty.
    /// ## Panics
    /// Panics if the number of elements in the `MinStack` overflows a `usize`.
    /// ## Examples
    /// ```
    /// # use stdlib_rs::min_stack;
    /// # use stdlib_rs::collections::min_stack::MinStack;
    /// let mut left = min_stack![1];
    /// let mut right = min_stack![2];
    /// left.append(&mut right);
    /// assert_eq!(left, min_stack![1, 2]);
    /// ```
    pub fn append(&mut self, other: &mut Self) {
        let other = mem::take(other);
        for item in other {
            self.push(item.0);
        }
    }
}

impl<T> MinStack<T>
where
    T: Clone + Ord,
{
    /// Finds the minimum item of the stack in O(1) time.
    /// If the stack is empty, returns `None`.
    /// ## Examples
    /// ```
    /// # use stdlib_rs::min_stack;
    /// # use stdlib_rs::collections::min_stack::MinStack;
    /// let stack = min_stack![1, 2];
    /// let empty: MinStack<i32> = min_stack![];
    /// assert_eq!(stack.min(), Some(1));
    /// assert_eq!(empty.min(), None);
    /// ```
    pub fn min(&self) -> Option<T> {
        self.0.last().map(|item| item.1.clone())
    }

    /// Look at the top item of the stack in O(1) time.
    /// If the stack is empty, returns `None`.
    /// ## Examples
    /// ```
    /// # use stdlib_rs::min_stack;
    /// # use stdlib_rs::collections::min_stack::MinStack;
    /// let stack = min_stack![1, 2];
    /// let empty: MinStack<i32> = min_stack![];
    /// assert_eq!(stack.peek(), Some(2));
    /// assert_eq!(empty.peek(), None);
    /// ```
    pub fn peek(&self) -> Option<T> {
        self.0.last().map(|item| item.0.clone())
    }

    /// Adds an item to the end of the stack in O(1) time.
    /// ## Examples
    /// ```
    /// # use stdlib_rs::min_stack;
    /// # use stdlib_rs::collections::min_stack::MinStack;
    /// let mut stack = min_stack![1];
    /// stack.push(2);
    /// assert_eq!(stack.len(), 2);
    /// ```
    pub fn push(&mut self, item: T) {
        if !self.0.is_empty() {
            let curr_min = self.min().clone().unwrap();
            let new_min = min(curr_min, item.clone());
            self.0.push((item, new_min));
        } else {
            self.0.push((item.clone(), item));
        }
    }

    /// Creates a min_stack from a vector.
    /// ## Examples
    /// ```
    /// # use stdlib_rs::min_stack;
    /// # use stdlib_rs::collections::min_stack::MinStack;
    /// let v = vec![1, 2, 3];
    /// let stack: MinStack<i32> = MinStack::from(v);
    /// assert_eq!(stack, min_stack![1, 2, 3]);
    /// ```
    pub fn from(vec: Vec<T>) -> Self {
        let mut stack = MinStack::new();
        for item in vec {
            stack.push(item);
        }
        stack
    }
}

/// A Stack data type that supports accessing the minimum item
/// in the stack in O(1) time.
#[derive(Default, Debug, Clone, PartialEq, Eq, PartialOrd)]
pub struct MinStack<T: Ord>(Vec<(T, T)>);

impl<T> IntoIterator for MinStack<T>
where
    T: Ord,
{
    type Item = (T, T);
    type IntoIter = std::vec::IntoIter<Self::Item>;

    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

impl<T> Deref for MinStack<T>
where
    T: Ord,
{
    type Target = [(T, T)];

    fn deref(&self) -> &Self::Target {
        self.0.deref()
    }
}

impl<T> DerefMut for MinStack<T>
where
    T: Ord,
{
    fn deref_mut(&mut self) -> &mut [(T, T)] {
        self.0.deref_mut()
    }
}

impl<T> Index<usize> for MinStack<T>
where
    T: Ord,
{
    type Output = (T, T);

    fn index(&self, index: usize) -> &Self::Output {
        &self.0[index]
    }
}

impl<T> MinStack<T>
where
    T: Ord,
{
    /// Creates a new MinStack.
    pub fn new() -> Self {
        MinStack(vec![])
    }

    /// Extracts a slice containing the Min Stack.
    /// Equivalent to `&s[..]`.
    pub fn as_slice(&self) -> &[(T, T)] {
        &self.0
    }

    /// Returns a raw pointer to the min_stack.
    pub fn as_ptr(&self) -> *const (T, T) {
        self.0.as_ptr()
    }

    /// Returns a mutable pointer to the min_stack.
    pub fn as_mut_ptr(&mut self) -> *mut (T, T) {
        self.0.as_mut_ptr()
    }

    /// Clears the MinStack, removing all values.
    /// ## Examples
    /// ```
    /// # use stdlib_rs::min_stack;
    /// # use stdlib_rs::collections::min_stack::*;
    /// let mut stack = min_stack![1,2,3];
    /// stack.clear();
    /// assert_eq!(stack, min_stack![]);
    /// ```
    pub fn clear(&mut self) {
        self.0.clear()
    }

    /// Creates a new MinStack with the given capacity.
    /// ## Examples
    /// ```
    /// # use stdlib_rs::min_stack;
    /// # use stdlib_rs::collections::min_stack::*;
    /// let stack: MinStack<i32> = MinStack::with_capacity(10);
    /// assert!(stack.capacity() >= 10);
    /// ```
    pub fn with_capacity(capacity: usize) -> MinStack<T> {
        let mut stack = MinStack::new();
        stack.0 = Vec::with_capacity(capacity);
        stack
    }

    /// Reserves capacity for at least `additional` more elements to be inserted
    /// in the given `MinStack<T>`. The collection may reserve more space to
    /// avoid frequent reallocations. After calling reserve, capacity will be
    /// greater than or equal to self.len() + additional.
    /// Does nothing if capacity is already sufficient.
    /// ## Examples
    /// ```
    /// # use stdlib_rs::min_stack;
    /// # use stdlib_rs::collections::min_stack::*;
    /// let mut stack = min_stack![1];
    /// stack.reserve(10);
    /// assert!(stack.capacity() >= 11);
    /// ```
    pub fn reserve(&mut self, additional: usize) {
        self.0.reserve(additional)
    }

    /// Returns the number of elements the vector can hold without reallocating.
    /// ## Examples
    /// ```
    /// # use stdlib_rs::min_stack;
    /// # use stdlib_rs::collections::min_stack::*;
    /// let stack: MinStack<i32> = MinStack::with_capacity(10);
    /// assert!(stack.capacity() >= 10);
    /// ```
    pub fn capacity(&self) -> usize {
        self.0.capacity()
    }

    /// Removes the last element from a vector and returns it, or `None` if it is empty.
    /// ## Examples
    /// ```
    /// # use stdlib_rs::min_stack;
    /// # use stdlib_rs::collections::min_stack::*;
    /// let mut stack = min_stack![1, 2, 3];
    /// let mut empty: MinStack<i32> = min_stack![];
    /// assert_eq!(stack.pop(), Some(3));
    /// assert_eq!(empty.pop(), None);
    /// ```
    pub fn pop(&mut self) -> Option<T> {
        match self.0.pop() {
            Some(item) => Some(item.0),
            None => None,
        }
    }

    /// Returns `true` if the MinStack has no elements.
    /// ## Examples
    /// ```
    /// # use stdlib_rs::min_stack;
    /// # use stdlib_rs::collections::min_stack::*;
    /// let stack = min_stack![1, 2, 3];
    /// let empty: MinStack<i32> = min_stack![];
    /// assert_eq!(stack.is_empty(), false);
    /// assert_eq!(empty.is_empty(), true);
    /// ```
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// Returns the number of elements in the stack.
    /// ## Examples
    /// ```
    /// # use stdlib_rs::min_stack;
    /// # use stdlib_rs::collections::min_stack::*;
    /// let stack = min_stack![1, 2, 3];
    /// assert_eq!(stack.len(), 3);
    /// ```
    pub fn len(&self) -> usize {
        self.0.len()
    }
}

/// Create a new min_stack with the elements inside the macro.
/// Works like the `vec![]` macro.
/// ## Examples
/// ```
/// # use stdlib_rs::min_stack;
/// # use stdlib_rs::collections::min_stack::*;
/// let stack = min_stack![1, 2, 3];
/// let empty: MinStack<i32> = min_stack![];
/// let mut other = MinStack::new();
/// other.push(1);
/// other.push(2);
/// other.push(3);
/// assert_eq!(stack, other);
/// assert_eq!(empty, MinStack::new());
/// ```
#[macro_export]
macro_rules! min_stack [
    ($($e:expr),*) => ({
        let mut _temp  = MinStack::new();
        $(_temp.push($e);)*
        _temp
    })
];

#[cfg(test)]
mod tests {
    use super::MinStack;

    #[test]
    fn min_test_1() {
        let min = min_stack![1, 2, 3].min();
        assert_eq!(min, Some(1));
    }

    #[test]
    fn min_test_empty() {
        let empty: MinStack<i32> = min_stack![];
        assert_eq!(empty.min(), None);
    }

    #[test]
    fn peek_test_1() {
        let stack = min_stack![1, 2, 3].peek();
        assert_eq!(stack, Some(3));
    }

    #[test]
    fn peek_test_empty() {
        let empty: MinStack<i32> = min_stack![];
        assert_eq!(empty.peek(), None);
    }

    #[test]
    fn empty_test() {
        let empty: MinStack<i32> = min_stack![];
        assert_eq!(empty.is_empty(), true);
    }

    #[test]
    fn non_empty_test() {
        let empty: MinStack<i32> = min_stack![1];
        assert_eq!(empty.is_empty(), false);
    }

    #[test]
    fn empty_len_test() {
        let empty: MinStack<i32> = min_stack![];
        assert_eq!(empty.len(), 0);
    }

    #[test]
    fn one_item_stack_len() {
        let empty: MinStack<i32> = min_stack![1];
        assert_eq!(empty.len(), 1);
    }

    #[test]
    fn into_iter_test_1() {
        let mut stack = min_stack![1, 2, 3].into_iter();
        assert_eq!(stack.next(), Some((1, 1)));
        assert_eq!(stack.next(), Some((2, 1)));
        assert_eq!(stack.next(), Some((3, 1)));
    }

    #[test]
    fn from_vec_test_1() {
        let vec = vec![1, 2, 3];
        assert_eq!(MinStack::from(vec), min_stack![1, 2, 3]);
    }

    #[test]
    fn test_index_1() {
        let stack = min_stack![1];
        assert_eq!(stack[0], (1, 1));
    }

    #[test]
    fn test_reserve_1() {
        let mut stack = min_stack![1];
        stack.reserve(10);
        assert!(stack.capacity() >= 11);
    }

    #[test]
    fn test_as_slice_1() {
        let stack = min_stack![1, 2, 3];
        assert_eq!([(1, 1), (2, 1), (3, 1)], stack.as_slice());
    }

    #[test]
    fn append_empty_stack() {
        let mut left = min_stack![1];
        let mut right = min_stack![];
        left.append(&mut right);
        assert_eq!(left, min_stack![1]);
        assert_eq!(right, min_stack![]);
    }

    #[test]
    fn append_to_empty_stack() {
        let mut left = min_stack![];
        let mut right = min_stack![1];
        left.append(&mut right);
        assert_eq!(left, min_stack![1]);
        assert_eq!(right, min_stack![]);
    }

    #[test]
    fn append_two_empty_stacks() {
        let mut left: MinStack<i32> = min_stack![];
        let mut right = min_stack![];
        left.append(&mut right);
        assert_eq!(left, min_stack![]);
        assert_eq!(right, min_stack![]);
    }

    #[test]
    fn append_two_stacks() {
        let mut left = min_stack![1];
        let mut right = min_stack![2];
        left.append(&mut right);
        assert_eq!(left, min_stack![1, 2]);
        assert_eq!(right, min_stack![]);
    }

    #[test]
    fn test_eq_stacks_1() {
        let left = min_stack![1, 2];
        let right = min_stack![1, 2];
        assert_eq!(left, right);
    }

    #[test]
    fn test_neq_stacks_1() {
        let left = min_stack![2, 1];
        let right = min_stack![1, 2];
        assert_ne!(left, right);
    }
}