1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
use melodium_core::*;
use melodium_macro::{check, mel_function, mel_treatment};

pub mod bin;
pub mod float;
pub mod num;
pub mod option;

/// Return whether `a` is equal to `b`
#[mel_function(
    generic T (PartialEquality)
)]
pub fn equal(a: T, b: T) -> bool {
    a.partial_equality_eq(&b)
}

/// Return whether `a` is different `b`
#[mel_function(
    generic T (PartialEquality)
)]
pub fn not_equal(a: T, b: T) -> bool {
    a.partial_equality_ne(&b)
}

/// Determine whether `a` is equal to `b`
#[mel_treatment(
    generic T (PartialEquality)
    input a Stream<T>
    input b Stream<T>
    output result Stream<bool>
)]
pub async fn equal() {
    while let (Ok(a), Ok(b)) = (a.recv_one().await, b.recv_one().await) {
        check!(result.send_one(a.partial_equality_eq(&b).into()).await)
    }
}

/// Determine whether `a` is different from `b`
#[mel_treatment(
    generic T (PartialEquality)
    input a Stream<T>
    input b Stream<T>
    output result Stream<bool>
)]
pub async fn not_equal() {
    while let (Ok(a), Ok(b)) = (a.recv_one().await, b.recv_one().await) {
        check!(result.send_one(a.partial_equality_ne(&b).into()).await)
    }
}

/// Tells whether `a` is strictly greater than `b`.
#[mel_function(
    generic T (PartialOrder)
)]
pub fn gt(a: T, b: T) -> bool {
    a.partial_order_gt(&b)
}

/// Determine whether `a` is strictly greater than `b`
#[mel_treatment(
    generic T (PartialOrder)
    input a Stream<T>
    input b Stream<T>
    output is Stream<bool>
)]
pub async fn greater_than() {
    while let (Ok(a), Ok(b)) = (a.recv_one().await, b.recv_one().await) {
        check!(is.send_one(a.partial_order_gt(&b).into()).await)
    }
}

/// Tells whether `a` is greater or equal to `b`.
#[mel_function(
    generic T (PartialOrder)
)]
pub fn ge(a: T, b: T) -> bool {
    a.partial_order_ge(&b)
}

/// Determine whether `a` is greater or equal to `b`
#[mel_treatment(
    generic T (PartialOrder)
    input a Stream<T>
    input b Stream<T>
    output is Stream<bool>
)]
pub async fn greater_equal() {
    while let (Ok(a), Ok(b)) = (a.recv_one().await, b.recv_one().await) {
        check!(is.send_one(a.partial_order_ge(&b).into()).await)
    }
}

/// Tells whether `a` is strictly lower than `b`.
#[mel_function(
    generic T (PartialOrder)
)]
pub fn lt(a: T, b: T) -> bool {
    a.partial_order_lt(&b)
}

/// Determine whether `a` is strictly lower than `b`
#[mel_treatment(
    generic T (PartialOrder)
    input a Stream<T>
    input b Stream<T>
    output is Stream<bool>
)]
pub async fn lower_than() {
    while let (Ok(a), Ok(b)) = (a.recv_one().await, b.recv_one().await) {
        check!(is.send_one(a.partial_order_lt(&b).into()).await)
    }
}

/// Tells whether `a` is lower or equal to `b`.
#[mel_function(
    generic T (PartialOrder)
)]
pub fn le(a: T, b: T) -> bool {
    a.partial_order_le(&b)
}

/// Determine whether `a` is lower or equal to `b`
#[mel_treatment(
    generic T (PartialOrder)
    input a Stream<T>
    input b Stream<T>
    output is Stream<bool>
)]
pub async fn lower_equal() {
    while let (Ok(a), Ok(b)) = (a.recv_one().await, b.recv_one().await) {
        check!(is.send_one(a.partial_order_le(&b).into()).await)
    }
}

/// Gives the minimum value between `a` and `b`.
#[mel_function(
    generic T (Order)
)]
pub fn min(a: T, b: T) -> T {
    a.order_min(&b)
}

/// Stream the minimum value between `a` and `b`.
#[mel_treatment(
    generic T (Order)
    input a Stream<T>
    input b Stream<T>
    output min Stream<T>
)]
pub async fn min() {
    while let (Ok(a), Ok(b)) = (a.recv_one().await, b.recv_one().await) {
        check!(min.send_one(a.order_min(&b)).await)
    }
}

/// Gives the maximum value between `a` and `b`.
#[mel_function(
    generic T (Order)
)]
pub fn max(a: T, b: T) -> T {
    a.order_max(&b)
}

/// Stream the maximum value between `a` and `b`.
#[mel_treatment(
    generic T (Order)
    input a Stream<T>
    input b Stream<T>
    output max Stream<T>
)]
pub async fn max() {
    while let (Ok(a), Ok(b)) = (a.recv_one().await, b.recv_one().await) {
        check!(max.send_one(a.order_max(&b)).await)
    }
}

/// Restrain value between `min` and `max`.
///
/// Value is returned if it is in the [`min`,`max`] interval.
/// If value is smaller `min` is returned, or if it greater `max` is returned.
#[mel_function(
    generic T (Order)
)]
pub fn clamp(value: T, min: T, max: T) -> T {
    value.order_clamp(&min, &max)
}

/// Stream value restrained between `min` and `max`.
///
/// Value is streamed if it is in the [`min`,`max`] interval.
/// If value is smaller `min` is sent, or if it greater `max` is sent.
#[mel_treatment(
    generic T (Order)
    input value Stream<T>
    output clamped Stream<T>
)]
pub async fn clamp(min: T, max: T) {
    while let Ok(values) = value
        .recv_many()
        .await
        .map(|values| Into::<VecDeque<Value>>::into(values))
    {
        check!(
            clamped
                .send_many(TransmissionValue::Other(
                    values
                        .into_iter()
                        .map(|val| val.order_clamp(&min, &max))
                        .collect()
                ))
                .await
        )
    }
}