1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
/// Creates a new [`StaticVec`](crate::StaticVec) from a [`vec!`](alloc::vec::Vec)-style
/// pseudo-slice. The newly created [`StaticVec`](crate::StaticVec) will have a capacity and length
/// exactly equal to the number of elements in the so-called slice. The "array-like" `[value; N]`
/// syntax is also supported, and both forms can be used in const contexts. This macro has no
/// particular trait impl requirements for the input type.
///
/// Example usage:
/// ```
/// use staticvec::{staticvec, StaticVec};
///
/// // The type of the StaticVec on the next line is `StaticVec<Vec<StaticVec<i32, 4>>, 1>`.
/// let v = staticvec![vec![staticvec![1, 2, 3, 4]]];
///
/// // The type of the StaticVec on the next line is `StaticVec<f64, 64>`.
/// let v2 = staticvec![12.0; 64];
///
/// const V3: StaticVec<i32, 4> = staticvec![1, 2, 3, 4];
/// assert_eq!(V3, [1, 2, 3, 4]);
///
/// static V4: StaticVec<i32, 128> = staticvec![27; 128];
/// assert!(V4 == [27; 128]);
/// ```
#[macro_export]
macro_rules! staticvec {
  ($($val:expr),* $(,)*) => {
    $crate::StaticVec::new_from_const_array([$($val),*])
  };
  ($val:expr; $n:expr) => {
    $crate::StaticVec::new_from_const_array([$val; $n])
  };
}

/// Creates a new [`StaticString`] from an `&str` literal. This macro can be used in const contexts,
/// in keeping with the other ones in this crate.
///
/// The `staticstring!` macro comes in two forms: one that solely takes an `&str` literal, where the
/// resulting [`StaticString`] will have a total capacity and initial length exactly equal to the
/// number of bytes in the literal, and one that takes an additional integral constant which is then
/// used to specify the constant-generic capacity independently from the length of the input string.
///
/// Implementing it this way allows the macro to be more flexible than would otherwise be possible due
/// to the required level of type inference being beyond what the compiler is (currently at least)
/// capable of.
///
/// Example usage:
/// ```
/// use staticvec::{staticstring, StaticString};
///
/// // Usage at runtime, creating a `StaticString` with both a length and capacity of 10:
/// let s1 = staticstring!("ABCDEFGHIJ");
/// assert_eq!(s1, "ABCDEFGHIJ");
///
/// // Usage at runtime, creating a `StaticString` with a length of 10 but a capacity of 20:
/// let s2 = staticstring!("ABCDEFGHIJ", 20);
/// assert_eq!(s2, "ABCDEFGHIJ");
///
/// // Usage at compile time, creating a `StaticString` with both a length and capacity of 10:
/// const S3: StaticString<10> = staticstring!("ABCDEFGHIJ");
/// assert_eq!(S3, "ABCDEFGHIJ");
///
/// // Usage at compile time, creating a `StaticString` with a length of 18 but a capacity of 36,
/// // keeping in mind that length is measured in bytes and not characters of course:
/// const S4: StaticString<36> = staticstring!("BC🤔BC🤔BC🤔", 36);
/// assert_eq!(S4, "BC🤔BC🤔BC🤔");
/// assert_eq!(S4.len(), 18);
/// assert_eq!(S4.capacity(), 36);
///
/// // Differing length and capacity in the context of compile-time initialization is more useful
/// // with `static mut` variables than it is `const` or regular `static` variables, obviously. For
/// // example:
/// static mut S5: StaticString<8> = staticstring!("ABCD", 8);
/// unsafe {
///   assert_eq!(S5, "ABCD");
///   assert_eq!(S5.len(), 4);
///   assert_eq!(S5.capacity(), 8);
///   assert_eq!(S5.remaining_capacity(), 4);
///   S5.push_str("EFGH");
///   assert_eq!(S5, "ABCDEFGH");
///   assert_eq!(S5.len(), 8);
///   assert_eq!(S5.remaining_capacity(), 0);
/// }
/// ```
///
/// Note that attempting to explicitly provide a capacity that is less than the number of bytes
/// in the input string will fail a *compile-time* static assertion in both const and runtime
/// contexts.
///
/// For example, this would give a compile-time error:
/// ```
/// // const S5: StaticString<1> = staticstring!("ABCDEFG", 1);
/// ```
/// As would the following:
/// ```
/// // let s6 = staticstring!("🤔🤔🤔🤔🤔🤔", 0);
/// ```
#[macro_export]
#[rustfmt::skip]
macro_rules! staticstring {
  ($val:expr) => {{
    const CAP: usize = $val.len();
    unsafe {
      $crate::StaticString::<CAP>::__new_from_staticvec(
        $crate::StaticVec::<u8, CAP>::__new_from_const_str($val)
      )
    }
  };};
  ($val:expr, $n:expr) => {{
    // In this scenario, an actual assertion inside of `StaticVec::bytes_to_data`
    // (available at compile time thanks to the `const_panic` feature) handles
    // ensuring that `$val.len() <= $n` for us.
    unsafe {
      $crate::StaticString::<$n>::__new_from_staticvec(
        $crate::StaticVec::<u8, $n>::__new_from_const_str($val)
      )
    }
  };};
}

/// This is the same macro available in my actual `staticsort` crate, which I previously had as
/// a dependency for this crate but decided to "inline" here as considering I wrote it myself it
/// seems silly to have a mandatory dependency for no real reason.
#[doc(hidden)]
#[macro_export]
macro_rules! __staticsort {
  ($type:ty, $low:expr, $high:expr, $len:expr, $values:expr) => {{
    match $len {
      0 => $values,
      _ => {
        #[inline]
        const fn static_sort(
          mut values: [$type; $len],
          mut low: isize,
          mut high: isize,
        ) -> [$type; $len]
        {
          if high - low <= 0 {
            return values;
          }
          loop {
            let mut i = low;
            let mut j = high;
            let p = values[(low + ((high - low) >> 1)) as usize];
            loop {
              while values[i as usize] < p {
                i += 1;
              }
              while values[j as usize] > p {
                j -= 1;
              }
              if i <= j {
                if i != j {
                  let q = values[i as usize];
                  values[i as usize] = values[j as usize];
                  values[j as usize] = q;
                }
                i += 1;
                j -= 1;
              }
              if i > j {
                break;
              }
            }
            if j - low < high - i {
              if low < j {
                values = static_sort(values, low, j);
              }
              low = i;
            } else {
              if i < high {
                values = static_sort(values, i, high)
              }
              high = j;
            }
            if low >= high {
              break;
            }
          }
          values
        }
        static_sort($values, $low, $high)
      }
    }
  };};
}

/// Accepts an array of any primitive [`Copy`](core::marker::Copy) type that has a
/// [`PartialOrd`](core::cmp::PartialOrd) implementation, sorts it, and creates a new
/// [`StaticVec`](crate::StaticVec) instance from the result in a fully const context compatible
/// manner.
///
/// Example usage:
/// ```
/// #![feature(const_fn, const_if_match, const_loop)]
///
/// use staticvec::{sortedstaticvec, StaticVec};
///
/// // Currently, it's necessary to have the type specified in the macro itself.
/// static V: StaticVec<f64, 3> = sortedstaticvec!(f64, [16.0, 15.0, 14.0]);
/// assert_eq!(V, [14.0, 15.0, 16.0]);
///
/// const V2: StaticVec<usize, 4> = sortedstaticvec!(usize, [16, 15, 14, 13]);
/// assert_eq!(V2, [13, 14, 15, 16]);
/// ```
#[macro_export]
macro_rules! sortedstaticvec {
  (@put_one $val:expr) => (1);
  ($type: ty, [$($val:expr),* $(,)*]) => {{
    const LEN: usize = 0$(+sortedstaticvec!(@put_one $val))*;
    match LEN {
      0 => $crate::StaticVec::new(),
      _ => $crate::StaticVec::new_from_const_array(
             $crate::__staticsort!(
               $type,
               0,
               (LEN as isize) - 1,
               LEN,
               [$($val),*]
             )
           ),
    }
  };};
}

macro_rules! impl_extend_ex {
  ($var_a:tt, $var_b:tt) => {
    /// Appends all elements, if any, from `iter` to the StaticVec. If `iter` has a size greater than
    /// the StaticVec's capacity, any items after that point are ignored.
    #[allow(unused_parens)]
    #[inline]
    default fn extend_ex(&mut self, iter: I) {
      let mut it = iter.into_iter();
      let mut i = self.length;
      while i < N {
        if let Some($var_a) = it.next() {
          unsafe {
            self.mut_ptr_at_unchecked(i).write($var_b);
          }
        } else {
          break;
        }
        i += 1;
      }
      self.length = i;
    }
  };
}

macro_rules! impl_from_iter_ex {
  ($var_a:tt, $var_b:tt) => {
    /// Creates a new StaticVec instance from the elements, if any, of `iter`.
    /// If `iter` has a size greater than the StaticVec's capacity, any items after
    /// that point are ignored.
    #[allow(unused_parens)]
    #[inline]
    default fn from_iter_ex(iter: I) -> Self {
      let mut res = Self::new_data_uninit();
      let mut it = iter.into_iter();
      let mut i = 0;
      while i < N {
        if let Some($var_a) = it.next() {
          unsafe {
            Self::first_ptr_mut(&mut res).add(i).write($var_b);
          }
        } else {
          break;
        }
        i += 1;
      }
      Self {
        data: res,
        length: i,
      }
    }
  };
}

macro_rules! impl_partial_eq_with_as_slice {
  ($left:ty, $right:ty) => {
    impl<T1, T2: PartialEq<T1>, const N1: usize, const N2: usize> PartialEq<$left> for $right {
      #[inline(always)]
      fn eq(&self, other: &$left) -> bool {
        self.as_slice() == other.as_slice()
      }
      #[allow(clippy::partialeq_ne_impl)]
      #[inline(always)]
      fn ne(&self, other: &$left) -> bool {
        self.as_slice() != other.as_slice()
      }
    }
  };
}

macro_rules! impl_partial_eq_with_get_unchecked {
  ($left:ty, $right:ty) => {
    impl<T1, T2: PartialEq<T1>, const N1: usize, const N2: usize> PartialEq<$left> for $right {
      #[inline(always)]
      fn eq(&self, other: &$left) -> bool {
        unsafe { self.as_slice() == other.get_unchecked(..) }
      }
      #[allow(clippy::partialeq_ne_impl)]
      #[inline(always)]
      fn ne(&self, other: &$left) -> bool {
        unsafe { self.as_slice() != other.get_unchecked(..) }
      }
    }
  };
}

macro_rules! impl_partial_eq_with_equals_no_deref {
  ($left:ty, $right:ty) => {
    impl<T1, T2: PartialEq<T1>, const N: usize> PartialEq<$left> for $right {
      #[inline(always)]
      fn eq(&self, other: &$left) -> bool {
        self.as_slice() == other
      }
      #[allow(clippy::partialeq_ne_impl)]
      #[inline(always)]
      fn ne(&self, other: &$left) -> bool {
        self.as_slice() != other
      }
    }
  };
}

macro_rules! impl_partial_eq_with_equals_deref {
  ($left:ty, $right:ty) => {
    impl<T1, T2: PartialEq<T1>, const N: usize> PartialEq<$left> for $right {
      #[inline(always)]
      fn eq(&self, other: &$left) -> bool {
        self.as_slice() == *other
      }
      #[allow(clippy::partialeq_ne_impl)]
      #[inline(always)]
      fn ne(&self, other: &$left) -> bool {
        self.as_slice() != *other
      }
    }
  };
}

macro_rules! impl_partial_ord_with_as_slice {
  ($left:ty, $right:ty) => {
    impl<T1, T2: PartialOrd<T1>, const N1: usize, const N2: usize> PartialOrd<$left> for $right {
      #[inline(always)]
      fn partial_cmp(&self, other: &$left) -> Option<Ordering> {
        partial_compare(self.as_slice(), other.as_slice())
      }
    }
  };
}

macro_rules! impl_partial_ord_with_get_unchecked {
  ($left:ty, $right:ty) => {
    impl<T1, T2: PartialOrd<T1>, const N1: usize, const N2: usize> PartialOrd<$left> for $right {
      #[inline(always)]
      fn partial_cmp(&self, other: &$left) -> Option<Ordering> {
        unsafe { partial_compare(self.as_slice(), other.get_unchecked(..)) }
      }
    }
  };
}

macro_rules! impl_partial_ord_with_as_slice_against_slice {
  ($left:ty, $right:ty) => {
    impl<T1, T2: PartialOrd<T1>, const N: usize> PartialOrd<$left> for $right {
      #[inline(always)]
      fn partial_cmp(&self, other: &$left) -> Option<Ordering> {
        partial_compare(self.as_slice(), other)
      }
    }
  };
}