1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
use fmt::Debug;
use std::fmt;
use std::{
    cmp::{max, min},
    collections::BinaryHeap,
};

use crate::{IndexableNum, AABB};

/// Error type for errors that may be returned in attempting to build the index.
#[derive(Debug, PartialEq)]
pub enum StaticAABB2DIndexBuildError {
    /// Error for the case when the item count given is 0.
    ZeroItemsError,
    /// Error for the case when the number of items added does not match the size given at
    /// construction.
    ItemCountError {
        /// The number of items that were added.
        added: usize,
        /// The number of items that were expected (set at construction).
        expected: usize,
    },
    /// Error for the case when the numeric type T used for the index fails to cast to/from u16.
    NumericCastError,
}

impl std::error::Error for StaticAABB2DIndexBuildError {}

impl fmt::Display for StaticAABB2DIndexBuildError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            StaticAABB2DIndexBuildError::ZeroItemsError => {
                write!(f, "item count given cannot be zero")
            }
            StaticAABB2DIndexBuildError::ItemCountError { added, expected } => write!(
                f,
                "added item count should equal static size given to builder \
                (added: {}, expected: {})",
                added, expected
            ),
            StaticAABB2DIndexBuildError::NumericCastError => write!(
                f,
                "numeric cast to/from type T to u16 failed (may be due to overflow/underflow)"
            ),
        }
    }
}

/// Used to build a [StaticAABB2DIndex].
#[derive(Debug, Clone)]
pub struct StaticAABB2DIndexBuilder<T = f64>
where
    T: IndexableNum,
{
    min_x: T,
    min_y: T,
    max_x: T,
    max_y: T,
    node_size: usize,
    num_items: usize,
    level_bounds: Vec<usize>,
    /// boxes holds the tree data (all nodes and items)
    boxes: Vec<AABB<T>>,
    /// indices is used to map from sorted indices to indices ordered according to the order items
    /// were added
    indices: Vec<usize>,
    // used to keep track of the current position for boxes added
    pos: usize,
}

/// Static/fixed size indexing data structure for two dimensional axis aligned bounding boxes.
///
/// The index allows for fast construction and fast querying but cannot be modified after creation.
/// This type is constructed from a [StaticAABB2DIndexBuilder].
///
/// 2D axis aligned bounding boxes are represented by two extent points (four values):
/// (min_x, min_y), (max_x, max_y).
///
/// # Examples
/// ```
/// use static_aabb2d_index::*;
/// // create builder for index containing 4 axis aligned bounding boxes
/// // index also supports integers and custom types that implement the IndexableNum trait
/// let mut builder: StaticAABB2DIndexBuilder<f64> = StaticAABB2DIndexBuilder::new(4);
/// // add bounding boxes to the index
/// // add takes in (min_x, min_y, max_x, max_y) of the bounding box
/// builder.add(0.0, 0.0, 2.0, 2.0);
/// builder.add(-1.0, -1.0, 3.0, 3.0);
/// builder.add(0.0, 0.0, 1.0, 3.0);
/// builder.add(4.0, 2.0, 16.0, 8.0);
/// // note build may return an error if the number of added boxes does not equal the static size
/// // given at the time the builder was created or the type used fails to cast to/from a u16
/// let index: StaticAABB2DIndex<f64> = builder.build().unwrap();
/// // query the created index (min_x, min_y, max_x, max_y)
/// let query_results = index.query(-1.0, -1.0, -0.5, -0.5);
/// // query_results holds the index positions of the boxes that overlap with the box given
/// // (positions are according to the order boxes were added the index builder)
/// assert_eq!(query_results, vec![1]);
/// // the query may also be done with a visiting function that can stop the query early
/// let mut visited_results: Vec<usize> = Vec::new();
/// let mut visitor = |box_added_pos: usize| -> bool {
///     visited_results.push(box_added_pos);
///     // return true to continue visiting results, false to stop early
///     true
/// };
///
/// index.visit_query(-1.0, -1.0, -0.5, -0.5, &mut visitor);
/// assert_eq!(visited_results, vec![1]);
/// ```
#[derive(Debug, Clone)]
pub struct StaticAABB2DIndex<T = f64>
where
    T: IndexableNum,
{
    min_x: T,
    min_y: T,
    max_x: T,
    max_y: T,
    node_size: usize,
    num_items: usize,
    level_bounds: Vec<usize>,
    /// boxes holds the tree data (all nodes and items)
    boxes: Vec<AABB<T>>,
    /// indices is used to map from sorted indices to indices ordered according to the order items
    /// were added
    indices: Vec<usize>,
}

// get_at_index! and set_at_index! macros to toggle bounds checking at compile time
#[cfg(not(feature = "allow_unsafe"))]
macro_rules! get_at_index {
    ($container:expr, $index:expr) => {
        &$container[$index]
    };
}

#[cfg(feature = "allow_unsafe")]
macro_rules! get_at_index {
    ($container:expr, $index:expr) => {
        unsafe { $container.get_unchecked($index) }
    };
}

#[cfg(not(feature = "allow_unsafe"))]
macro_rules! set_at_index {
    ($container:expr, $index:expr, $value:expr) => {
        $container[$index] = $value
    };
}

#[cfg(feature = "allow_unsafe")]
macro_rules! set_at_index {
    ($container:expr, $index:expr, $value:expr) => {
        unsafe { *$container.get_unchecked_mut($index) = $value }
    };
}

impl<T> StaticAABB2DIndexBuilder<T>
where
    T: IndexableNum,
{
    fn init(num_items: usize, node_size: usize) -> Self {
        if num_items == 0 {
            // just return early, build() method will return error result
            return StaticAABB2DIndexBuilder {
                min_x: T::max_value(),
                min_y: T::max_value(),
                max_x: T::min_value(),
                max_y: T::min_value(),
                node_size,
                num_items,
                level_bounds: Vec::new(),
                boxes: Vec::new(),
                indices: Vec::new(),
                pos: 0,
            };
        }

        let node_size = min(max(node_size, 2), 65535);

        let mut n = num_items;
        let mut num_nodes = num_items;
        let mut level_bounds: Vec<usize> = Vec::new();

        level_bounds.push(n);

        // calculate the total number of nodes in the R-tree to allocate space for
        // and the index of each tree level (level_bounds, used in search later)
        loop {
            n = (n as f64 / node_size as f64).ceil() as usize;
            num_nodes += n;
            level_bounds.push(num_nodes);
            if n == 1 {
                break;
            }
        }

        // unsafe alternative for performance (uninitialized memory rather than initialize to zero)
        // since it is all initialized later before use
        #[cfg(feature = "allow_unsafe")]
        let init_boxes = || {
            let mut boxes = Vec::with_capacity(num_nodes);
            unsafe {
                boxes.set_len(num_nodes);
            }
            boxes
        };

        #[cfg(not(feature = "allow_unsafe"))]
        let init_boxes = || vec![AABB::default(); num_nodes];

        let boxes = init_boxes();

        StaticAABB2DIndexBuilder {
            min_x: T::max_value(),
            min_y: T::max_value(),
            max_x: T::min_value(),
            max_y: T::min_value(),
            node_size,
            num_items,
            level_bounds,
            boxes,
            indices: (0..num_nodes).collect(),
            pos: 0,
        }
    }

    /// Construct a new [StaticAABB2DIndexBuilder] to fit exactly the specified `count` number of
    /// items.
    #[inline]
    pub fn new(count: usize) -> Self {
        StaticAABB2DIndexBuilder::init(count, 16)
    }

    /// Construct a new [StaticAABB2DIndexBuilder] to fit exactly the specified `count` number of
    /// items and use `node_size` for the index tree shape.
    ///
    /// Each node in the index tree has a maximum size which may be adjusted by `node_size` for
    /// performance reasons, however the default value of 16 when calling
    /// `StaticAABB2DIndexBuilder::new` is tested to be optimal in most cases.
    ///
    /// If `node_size` is less than 2 then 2 is used, if `node_size` is greater than 65535 then
    /// 65535 is used.
    #[inline]
    pub fn new_with_node_size(count: usize, node_size: usize) -> Self {
        StaticAABB2DIndexBuilder::init(count, node_size)
    }

    /// Add an axis aligned bounding box with the extent points (`min_x`, `min_y`),
    /// (`max_x`, `max_y`) to the index.
    ///
    /// For performance reasons the sanity checks of `min_x <= max_x` and `min_y <= max_y` are only
    /// debug asserted. If an invalid box is added it may lead to a panic or unexpected behavior
    /// from the constructed [StaticAABB2DIndex].
    pub fn add(&mut self, min_x: T, min_y: T, max_x: T, max_y: T) -> &mut Self {
        // catch adding past num_items (error will be returned when build is called)
        if self.pos >= self.num_items {
            self.pos += 1;
            return self;
        }
        debug_assert!(min_x <= max_x);
        debug_assert!(min_y <= max_y);

        set_at_index!(self.boxes, self.pos, AABB::new(min_x, min_y, max_x, max_y));
        self.pos += 1;

        self.min_x = T::min(self.min_x, min_x);
        self.min_y = T::min(self.min_y, min_y);
        self.max_x = T::max(self.max_x, max_x);
        self.max_y = T::max(self.max_y, max_y);
        self
    }

    /// Build the [StaticAABB2DIndex] with the boxes that have been added.
    ///
    /// If the number of added items does not match the count given at the time the builder was
    /// created then a [StaticAABB2DIndexBuildError::ItemCountError] will be returned.
    ///
    /// If the numeric type T fails to cast to/from a u16 for any reason then a
    /// [StaticAABB2DIndexBuildError::NumericCastError] will be returned.
    pub fn build(mut self) -> Result<StaticAABB2DIndex<T>, StaticAABB2DIndexBuildError> {
        if self.pos != self.num_items {
            return Err(StaticAABB2DIndexBuildError::ItemCountError {
                added: self.pos,
                expected: self.num_items,
            });
        }

        if self.num_items == 0 {
            return Err(StaticAABB2DIndexBuildError::ZeroItemsError);
        }

        // if number of items is less than node size then skip sorting since each node of boxes must
        // be fully scanned regardless and there is only one node
        if self.num_items <= self.node_size {
            set_at_index!(self.indices, self.pos, 0);
            // fill root box with total extents
            set_at_index!(
                self.boxes,
                self.pos,
                AABB::new(self.min_x, self.min_y, self.max_x, self.max_y)
            );
            return Ok(StaticAABB2DIndex {
                min_x: self.min_x,
                min_y: self.min_y,
                max_x: self.max_x,
                max_y: self.max_y,
                node_size: self.node_size,
                num_items: self.num_items,
                level_bounds: self.level_bounds,
                boxes: self.boxes,
                indices: self.indices,
            });
        }

        let width = self.max_x - self.min_x;
        let height = self.max_y - self.min_y;

        // hilbert max input value for x and y
        let hilbert_max = T::from(u16::MAX).ok_or(StaticAABB2DIndexBuildError::NumericCastError)?;
        let two = T::from(2u16).ok_or(StaticAABB2DIndexBuildError::NumericCastError)?;

        // mapping the x and y coordinates of the center of the item boxes to values in the range
        // [0 -> n - 1] such that the min of the entire set of bounding boxes maps to 0 and the max
        // of the entire set of bounding boxes maps to n - 1 our 2d space is x: [0 -> n-1] and
        // y: [0 -> n-1], our 1d hilbert curve value space is d: [0 -> n^2 - 1]
        let mut hilbert_values: Vec<u32> = Vec::with_capacity(self.num_items);
        for aabb in self.boxes.iter().take(self.num_items) {
            let x = if width == T::zero() {
                0
            } else {
                (hilbert_max * ((aabb.min_x + aabb.max_x) / two - self.min_x) / width)
                    .to_u16()
                    .ok_or(StaticAABB2DIndexBuildError::NumericCastError)?
            };
            let y = if height == T::zero() {
                0
            } else {
                (hilbert_max * ((aabb.min_y + aabb.max_y) / two - self.min_y) / height)
                    .to_u16()
                    .ok_or(StaticAABB2DIndexBuildError::NumericCastError)?
            };
            hilbert_values.push(hilbert_xy_to_index(x, y));
        }

        // sort items by their Hilbert value for constructing the tree
        sort(
            &mut hilbert_values,
            &mut self.boxes,
            &mut self.indices,
            0,
            self.num_items - 1,
            self.node_size,
        );

        // generate nodes at each tree level, bottom-up
        let mut pos = 0;
        for i in 0..self.level_bounds.len() - 1 {
            let end = *get_at_index!(self.level_bounds, i);

            // generate a parent node for each block of consecutive node_size nodes
            while pos < end {
                let mut node_min_x = T::max_value();
                let mut node_min_y = T::max_value();
                let mut node_max_x = T::min_value();
                let mut node_max_y = T::min_value();
                let node_index = pos;

                // calculate bounding box for the new node
                let mut j = 0;
                while j < self.node_size && pos < end {
                    let aabb = get_at_index!(self.boxes, pos);
                    pos += 1;
                    node_min_x = T::min(node_min_x, aabb.min_x);
                    node_min_y = T::min(node_min_y, aabb.min_y);
                    node_max_x = T::max(node_max_x, aabb.max_x);
                    node_max_y = T::max(node_max_y, aabb.max_y);
                    j += 1;
                }

                // add the new node to the tree
                set_at_index!(self.indices, self.pos, node_index);
                set_at_index!(
                    self.boxes,
                    self.pos,
                    AABB::new(node_min_x, node_min_y, node_max_x, node_max_y)
                );
                self.pos += 1;
            }
        }

        Ok(StaticAABB2DIndex {
            min_x: self.min_x,
            min_y: self.min_y,
            max_x: self.max_x,
            max_y: self.max_y,
            node_size: self.node_size,
            num_items: self.num_items,
            level_bounds: self.level_bounds,
            boxes: self.boxes,
            indices: self.indices,
        })
    }
}

/// Maps 2d space to 1d hilbert curve space.
///
/// 2d space is `x: [0 -> n-1]` and `y: [0 -> n-1]`, 1d hilbert curve value space is
/// `d: [0 -> n^2 - 1]`, where n = 2^16, so `x` and `y` must be between 0 and [u16::MAX]
/// (65535 or 2^16 - 1).
pub fn hilbert_xy_to_index(x: u16, y: u16) -> u32 {
    let x = x as u32;
    let y = y as u32;

    // Fast Hilbert curve algorithm by http://threadlocalmutex.com/
    // Ported from C++ https://github.com/rawrunprotected/hilbert_curves (public domain)
    let mut a_1 = x ^ y;
    let mut b_1 = 0xFFFF ^ a_1;
    let mut c_1 = 0xFFFF ^ (x | y);
    let mut d_1 = x & (y ^ 0xFFFF);

    let mut a_2 = a_1 | (b_1 >> 1);
    let mut b_2 = (a_1 >> 1) ^ a_1;
    let mut c_2 = ((c_1 >> 1) ^ (b_1 & (d_1 >> 1))) ^ c_1;
    let mut d_2 = ((a_1 & (c_1 >> 1)) ^ (d_1 >> 1)) ^ d_1;

    a_1 = a_2;
    b_1 = b_2;
    c_1 = c_2;
    d_1 = d_2;
    a_2 = (a_1 & (a_1 >> 2)) ^ (b_1 & (b_1 >> 2));
    b_2 = (a_1 & (b_1 >> 2)) ^ (b_1 & ((a_1 ^ b_1) >> 2));
    c_2 ^= (a_1 & (c_1 >> 2)) ^ (b_1 & (d_1 >> 2));
    d_2 ^= (b_1 & (c_1 >> 2)) ^ ((a_1 ^ b_1) & (d_1 >> 2));

    a_1 = a_2;
    b_1 = b_2;
    c_1 = c_2;
    d_1 = d_2;
    a_2 = (a_1 & (a_1 >> 4)) ^ (b_1 & (b_1 >> 4));
    b_2 = (a_1 & (b_1 >> 4)) ^ (b_1 & ((a_1 ^ b_1) >> 4));
    c_2 ^= (a_1 & (c_1 >> 4)) ^ (b_1 & (d_1 >> 4));
    d_2 ^= (b_1 & (c_1 >> 4)) ^ ((a_1 ^ b_1) & (d_1 >> 4));

    a_1 = a_2;
    b_1 = b_2;
    c_1 = c_2;
    d_1 = d_2;
    c_2 ^= (a_1 & (c_1 >> 8)) ^ (b_1 & (d_1 >> 8));
    d_2 ^= (b_1 & (c_1 >> 8)) ^ ((a_1 ^ b_1) & (d_1 >> 8));

    a_1 = c_2 ^ (c_2 >> 1);
    b_1 = d_2 ^ (d_2 >> 1);

    let mut i0 = x ^ y;
    let mut i1 = b_1 | (0xFFFF ^ (i0 | a_1));

    i0 = (i0 | (i0 << 8)) & 0x00FF00FF;
    i0 = (i0 | (i0 << 4)) & 0x0F0F0F0F;
    i0 = (i0 | (i0 << 2)) & 0x33333333;
    i0 = (i0 | (i0 << 1)) & 0x55555555;

    i1 = (i1 | (i1 << 8)) & 0x00FF00FF;
    i1 = (i1 | (i1 << 4)) & 0x0F0F0F0F;
    i1 = (i1 | (i1 << 2)) & 0x33333333;
    i1 = (i1 | (i1 << 1)) & 0x55555555;

    (i1 << 1) | i0
}

// modified quick sort that skips sorting boxes within the same node
fn sort<T>(
    values: &mut Vec<u32>,
    boxes: &mut Vec<AABB<T>>,
    indices: &mut Vec<usize>,
    left: usize,
    right: usize,
    node_size: usize,
) where
    T: IndexableNum,
{
    debug_assert!(left <= right);

    if left / node_size >= right / node_size {
        // remaining to be sorted fits within the the same node, skip sorting further
        // since all boxes within a node must be visited when querying regardless
        return;
    }

    let pivot = *get_at_index!(values, (left + right) >> 1);
    let mut i = left.wrapping_sub(1);
    let mut j = right.wrapping_add(1);

    loop {
        loop {
            i = i.wrapping_add(1);
            if *get_at_index!(values, i) >= pivot {
                break;
            }
        }

        loop {
            j = j.wrapping_sub(1);
            if *get_at_index!(values, j) <= pivot {
                break;
            }
        }

        if i >= j {
            break;
        }

        swap(values, boxes, indices, i, j);
    }

    sort(values, boxes, indices, left, j, node_size);
    sort(values, boxes, indices, j.wrapping_add(1), right, node_size);
}

#[inline]
fn swap<T>(
    values: &mut Vec<u32>,
    boxes: &mut Vec<AABB<T>>,
    indices: &mut Vec<usize>,
    i: usize,
    j: usize,
) where
    T: IndexableNum,
{
    values.swap(i, j);
    boxes.swap(i, j);
    indices.swap(i, j);
}

struct QueryIterator<'a, T>
where
    T: IndexableNum,
{
    aabb_index: &'a StaticAABB2DIndex<T>,
    stack: Vec<usize>,
    min_x: T,
    min_y: T,
    max_x: T,
    max_y: T,
    node_index: usize,
    level: usize,
    pos: usize,
    end: usize,
}

impl<'a, T> QueryIterator<'a, T>
where
    T: IndexableNum,
{
    #[inline]
    fn new(
        aabb_index: &'a StaticAABB2DIndex<T>,
        min_x: T,
        min_y: T,
        max_x: T,
        max_y: T,
    ) -> QueryIterator<'a, T> {
        let node_index = aabb_index.boxes.len() - 1;
        let pos = node_index;
        let level = aabb_index.level_bounds.len() - 1;
        let end = min(
            node_index + aabb_index.node_size,
            *get_at_index!(aabb_index.level_bounds, level),
        );
        QueryIterator {
            aabb_index,
            stack: Vec::with_capacity(16),
            min_x,
            min_y,
            max_x,
            max_y,
            node_index,
            level,
            pos,
            end,
        }
    }
}

impl<'a, T> Iterator for QueryIterator<'a, T>
where
    T: IndexableNum,
{
    type Item = usize;

    // NOTE: The inline attribute here shows significant performance improvements in benchmarks.
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        loop {
            while self.pos < self.end {
                let current_pos = self.pos;
                self.pos += 1;

                let aabb = get_at_index!(self.aabb_index.boxes, current_pos);
                if !aabb.overlaps(self.min_x, self.min_y, self.max_x, self.max_y) {
                    // no overlap
                    continue;
                }

                let index = *get_at_index!(self.aabb_index.indices, current_pos);
                if self.node_index < self.aabb_index.num_items {
                    return Some(index);
                } else {
                    self.stack.push(index);
                    self.stack.push(self.level - 1);
                }
            }

            if self.stack.len() > 1 {
                self.level = self.stack.pop().unwrap();
                self.node_index = self.stack.pop().unwrap();
                self.pos = self.node_index;
                self.end = min(
                    self.node_index + self.aabb_index.node_size,
                    *get_at_index!(self.aabb_index.level_bounds, self.level),
                );
            } else {
                return None;
            }
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        if self.pos >= self.end && self.stack.len() < 2 {
            // iterator exhausted
            (0, Some(0))
        } else {
            // never yields more than the number of items in the index
            (0, Some(self.aabb_index.num_items))
        }
    }
}

struct QueryIteratorStackRef<'a, T>
where
    T: IndexableNum,
{
    aabb_index: &'a StaticAABB2DIndex<T>,
    stack: &'a mut Vec<usize>,
    min_x: T,
    min_y: T,
    max_x: T,
    max_y: T,
    node_index: usize,
    level: usize,
    pos: usize,
    end: usize,
}

impl<'a, T> QueryIteratorStackRef<'a, T>
where
    T: IndexableNum,
{
    #[inline]
    fn new(
        aabb_index: &'a StaticAABB2DIndex<T>,
        stack: &'a mut Vec<usize>,
        min_x: T,
        min_y: T,
        max_x: T,
        max_y: T,
    ) -> QueryIteratorStackRef<'a, T> {
        let node_index = aabb_index.boxes.len() - 1;
        let pos = node_index;
        let level = aabb_index.level_bounds.len() - 1;
        let end = min(
            node_index + aabb_index.node_size,
            *get_at_index!(aabb_index.level_bounds, level),
        );

        // ensure the stack is empty for use
        stack.clear();

        QueryIteratorStackRef {
            aabb_index,
            stack,
            min_x,
            min_y,
            max_x,
            max_y,
            node_index,
            level,
            pos,
            end,
        }
    }
}

impl<'a, T> Iterator for QueryIteratorStackRef<'a, T>
where
    T: IndexableNum,
{
    type Item = usize;

    // NOTE: The inline attribute here shows significant performance improvements in benchmarks.
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        loop {
            while self.pos < self.end {
                let current_pos = self.pos;
                self.pos += 1;

                let aabb = get_at_index!(self.aabb_index.boxes, current_pos);
                if !aabb.overlaps(self.min_x, self.min_y, self.max_x, self.max_y) {
                    // no overlap
                    continue;
                }

                let index = *get_at_index!(self.aabb_index.indices, current_pos);
                if self.node_index < self.aabb_index.num_items {
                    return Some(index);
                } else {
                    self.stack.push(index);
                    self.stack.push(self.level - 1);
                }
            }

            if self.stack.len() > 1 {
                self.level = self.stack.pop().unwrap();
                self.node_index = self.stack.pop().unwrap();
                self.pos = self.node_index;
                self.end = min(
                    self.node_index + self.aabb_index.node_size,
                    *get_at_index!(self.aabb_index.level_bounds, self.level),
                );
            } else {
                return None;
            }
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        if self.pos >= self.end && self.stack.len() < 2 {
            // iterator exhausted
            (0, Some(0))
        } else {
            // never yields more than the number of items in the index
            (0, Some(self.aabb_index.num_items))
        }
    }
}

/// Type alias for priority queue used for nearest neighbor searches.
///
/// See: [StaticAABB2DIndex::visit_neighbors_with_queue].
pub type NeighborPriorityQueue<T> = BinaryHeap<NeighborsState<T>>;

/// Holds state for priority queue used in nearest neighbors query.
///
/// Note this type is public for use in passing in an existing priority queue but
/// all fields and constructor are private for internal use only.
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct NeighborsState<T>
where
    T: IndexableNum,
{
    index: usize,
    is_leaf_node: bool,
    dist: T,
}

impl<T> NeighborsState<T>
where
    T: IndexableNum,
{
    fn new(index: usize, is_leaf_node: bool, dist: T) -> Self {
        NeighborsState {
            index,
            is_leaf_node,
            dist,
        }
    }
}

impl<T> Eq for NeighborsState<T> where T: IndexableNum {}

impl<T> Ord for NeighborsState<T>
where
    T: IndexableNum,
{
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        if let Some(ord) = self.partial_cmp(other) {
            ord
        } else {
            // if ordering not possible (due to NAN) then just consider equal
            std::cmp::Ordering::Equal
        }
    }
}

impl<T> PartialOrd for NeighborsState<T>
where
    T: IndexableNum,
{
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        // flip ordering (compare other to self rather than self to other) to prioritize minimum
        // dist in priority queue
        other.dist.partial_cmp(&self.dist)
    }
}

impl<T> StaticAABB2DIndex<T>
where
    T: IndexableNum,
{
    /// Gets the min_x extent value of the all the bounding boxes in the index.
    #[inline]
    pub fn min_x(&self) -> T {
        self.min_x
    }

    /// Gets the min_y extent value of the all the bounding boxes in the index.
    #[inline]
    pub fn min_y(&self) -> T {
        self.min_y
    }

    /// Gets the max_x extent value of the all the bounding boxes in the index.
    #[inline]
    pub fn max_x(&self) -> T {
        self.max_x
    }

    /// Gets the max_y extent value of the all the bounding boxes in the index.
    #[inline]
    pub fn max_y(&self) -> T {
        self.max_y
    }

    /// Gets the total count of items that were added to the index.
    #[inline]
    pub fn count(&self) -> usize {
        self.num_items
    }

    /// Queries the index, returning a collection of indexes to items that overlap with the bounding
    /// box given.
    ///
    /// `min_x`, `min_y`, `max_x`, and `max_y` represent the bounding box to use for the query.
    /// Indexes returned match with the order items were added to the index using
    /// [StaticAABB2DIndexBuilder::add].
    #[inline]
    pub fn query(&self, min_x: T, min_y: T, max_x: T, max_y: T) -> Vec<usize> {
        let mut results = Vec::new();
        let mut visitor = |i| {
            results.push(i);
            true
        };
        self.visit_query(min_x, min_y, max_x, max_y, &mut visitor);
        results
    }

    /// The same as [StaticAABB2DIndex::query] but instead of returning a [Vec] of results a lazy
    /// iterator is returned which yields the results.
    ///
    /// # Examples
    /// ```
    /// use static_aabb2d_index::*;
    /// let mut builder = StaticAABB2DIndexBuilder::new(4);
    /// builder
    ///     .add(0.0, 0.0, 2.0, 2.0)
    ///     .add(-1.0, -1.0, 3.0, 3.0)
    ///     .add(0.0, 0.0, 1.0, 3.0)
    ///     .add(4.0, 2.0, 16.0, 8.0);
    /// let index = builder.build().unwrap();
    /// let query_results = index.query_iter(-1.0, -1.0, -0.5, -0.5).collect::<Vec<usize>>();
    /// assert_eq!(query_results, vec![1]);
    /// ```
    #[inline]
    pub fn query_iter<'a>(
        &'a self,
        min_x: T,
        min_y: T,
        max_x: T,
        max_y: T,
    ) -> impl Iterator<Item = usize> + 'a {
        QueryIterator::<'a, T>::new(&self, min_x, min_y, max_x, max_y)
    }

    /// The same as [StaticAABB2DIndex::query_iter] but allows using an existing buffer for stack
    /// traversal.
    #[inline]
    pub fn query_iter_with_stack<'a>(
        &'a self,
        min_x: T,
        min_y: T,
        max_x: T,
        max_y: T,
        stack: &'a mut Vec<usize>,
    ) -> impl Iterator<Item = usize> + 'a {
        QueryIteratorStackRef::<'a, T>::new(&self, stack, min_x, min_y, max_x, max_y)
    }

    /// Same as [StaticAABB2DIndex::query] but instead of returning a collection of indexes a
    /// `visitor` function is called for each index that would be returned.  The `visitor` returns a
    /// bool indicating whether to continue visiting (true) or not (false).
    #[inline]
    pub fn visit_query<F>(&self, min_x: T, min_y: T, max_x: T, max_y: T, visitor: &mut F)
    where
        F: FnMut(usize) -> bool,
    {
        let mut stack: Vec<usize> = Vec::with_capacity(16);
        self.visit_query_with_stack(min_x, min_y, max_x, max_y, visitor, &mut stack);
    }

    /// Returns all the item [AABB] that were added to the index by [StaticAABB2DIndexBuilder::add].
    ///
    /// Use [StaticAABB2DIndex::map_all_boxes_index] to map a box back to the original index
    /// position it was added.
    #[inline]
    pub fn item_boxes(&self) -> &[AABB<T>] {
        &self.boxes[0..self.num_items]
    }

    /// Gets the node size used for the [StaticAABB2DIndex].
    ///
    /// The node size is the maximum number of boxes stored as children of each node in the index
    /// tree.
    #[inline]
    pub fn node_size(&self) -> usize {
        self.node_size
    }

    /// Gets the level bounds for all the boxes in the [StaticAABB2DIndex].
    ///
    /// The level bounds are the index positions in [StaticAABB2DIndex::all_boxes] where a change in
    /// the level of the index tree occurs.
    #[inline]
    pub fn level_bounds(&self) -> &[usize] {
        &self.level_bounds
    }

    /// Gets all the bounding boxes for the [StaticAABB2DIndex].
    ///
    /// The boxes are ordered from the bottom of the tree up, so from 0 to
    /// [StaticAABB2DIndex::count] are all the item bounding boxes. Use
    /// [StaticAABB2DIndex::map_all_boxes_index] to map a box back to the original index position it
    /// was added or find the start position for the children of a node box.
    #[inline]
    pub fn all_boxes(&self) -> &[AABB<T>] {
        &self.boxes
    }

    /// Gets the original item index position (from the time it was added) from a
    /// [StaticAABB2DIndex::all_boxes] slice index position.
    ///
    /// If `all_boxes_index` is greater than [StaticAABB2DIndex::count] then it will return the
    /// [StaticAABB2DIndex::all_boxes] starting index of the node's children boxes.
    /// See the index_tree_structure.rs example for more information.
    #[inline]
    pub fn map_all_boxes_index(&self, all_boxes_index: usize) -> usize {
        self.indices[all_boxes_index]
    }

    /// Same as [StaticAABB2DIndex::query] but accepts an existing [Vec] to be used as a stack
    /// buffer when performing the query to avoid the need for allocation (this is for performance
    /// benefit only).
    #[inline]
    pub fn query_with_stack(
        &self,
        min_x: T,
        min_y: T,
        max_x: T,
        max_y: T,
        stack: &mut Vec<usize>,
    ) -> Vec<usize> {
        let mut results = Vec::new();
        let mut visitor = |i| {
            results.push(i);
            true
        };
        self.visit_query_with_stack(min_x, min_y, max_x, max_y, &mut visitor, stack);
        results
    }

    /// Same as [StaticAABB2DIndex::visit_query] but accepts an existing [Vec] to be used as a stack
    /// buffer when performing the query to avoid the need for allocation (this is for performance
    /// benefit only).
    pub fn visit_query_with_stack<F>(
        &self,
        min_x: T,
        min_y: T,
        max_x: T,
        max_y: T,
        visitor: &mut F,
        stack: &mut Vec<usize>,
    ) where
        F: FnMut(usize) -> bool,
    {
        let mut node_index = self.boxes.len() - 1;
        let mut level = self.level_bounds.len() - 1;
        // ensure the stack is empty for use
        stack.clear();

        'search_loop: loop {
            let end = min(
                node_index + self.node_size,
                *get_at_index!(self.level_bounds, level),
            );

            for pos in node_index..end {
                let aabb = get_at_index!(self.boxes, pos);
                if !aabb.overlaps(min_x, min_y, max_x, max_y) {
                    // no overlap
                    continue;
                }

                let index = *get_at_index!(self.indices, pos);
                if node_index < self.num_items {
                    if !visitor(index) {
                        break 'search_loop;
                    }
                } else {
                    stack.push(index);
                    stack.push(level - 1);
                }
            }

            if stack.len() > 1 {
                level = stack.pop().unwrap();
                node_index = stack.pop().unwrap();
            } else {
                break 'search_loop;
            }
        }
    }

    /// Visit all neighboring items in order of minimum euclidean distance to the point defined by
    /// `x` and `y` until `visitor` returns false.
    ///
    /// ## Notes
    /// * The visitor function must return false to stop visiting items or all items will be
    ///   visited.
    /// * The visitor function receives the index of the item being visited and the squared
    ///   euclidean distance to that item from the point given.
    /// * Because distances are squared (`dx * dx + dy * dy`) be cautious of smaller numeric types
    ///   overflowing (e.g. it's easy to overflow an i32 with squared distances).
    /// * If the point is inside of an item's bounding box then the euclidean distance is 0.
    /// * If repeatedly calling this method then [StaticAABB2DIndex::visit_neighbors_with_queue] can
    ///   be used to avoid repeated allocations for the priority queue used internally.
    #[inline]
    pub fn visit_neighbors<F>(&self, x: T, y: T, visitor: &mut F)
    where
        F: FnMut(usize, T) -> bool,
    {
        let mut queue = NeighborPriorityQueue::new();
        self.visit_neighbors_with_queue(x, y, visitor, &mut queue);
    }

    /// Works the same as [StaticAABB2DIndex::visit_neighbors] but accepts an existing binary heap
    /// to be used as a priority queue to avoid allocations.
    pub fn visit_neighbors_with_queue<F>(
        &self,
        x: T,
        y: T,
        visitor: &mut F,
        queue: &mut NeighborPriorityQueue<T>,
    ) where
        F: FnMut(usize, T) -> bool,
    {
        // small helper function to compute axis distance between point and bounding box axis
        fn axis_dist<U>(k: U, min: U, max: U) -> U
        where
            U: IndexableNum,
        {
            if k < min {
                min - k
            } else if k > max {
                k - max
            } else {
                U::zero()
            }
        }

        let mut node_index = self.boxes.len() - 1;
        queue.clear();

        'search_loop: loop {
            let upper_bound_level_index = match self.level_bounds.binary_search(&node_index) {
                // level bound found, add one to get upper bound
                Ok(i) => i + 1,
                // level bound not found (node_index is between bounds, do not need to add one to
                // get upper bound)
                Err(i) => i,
            };

            // end index of the node
            let end = min(
                node_index + self.node_size,
                self.level_bounds[upper_bound_level_index],
            );

            // add nodes to queue
            for pos in node_index..end {
                let aabb = get_at_index!(self.boxes, pos);
                let dx = axis_dist(x, aabb.min_x, aabb.max_x);
                let dy = axis_dist(y, aabb.min_y, aabb.max_y);
                let dist = dx * dx + dy * dy;
                let index = *get_at_index!(self.indices, pos);
                let is_leaf_node = node_index < self.num_items;
                queue.push(NeighborsState::new(index, is_leaf_node, dist));
            }

            let mut continue_search = false;
            // pop and visit items in queue
            while let Some(state) = queue.pop() {
                if state.is_leaf_node {
                    // visit leaf node
                    if !visitor(state.index, state.dist) {
                        // stop visiting if visitor returns false
                        break 'search_loop;
                    }
                } else {
                    // update node index for next iteration
                    node_index = state.index;
                    // set flag to continue search
                    continue_search = true;
                    break;
                }
            }

            if !continue_search {
                break 'search_loop;
            }
        }
    }
}