1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
//! # state -- safe and effortless state management
//!
//! This crate allows you to safely and effortlessly manage global and/or
//! thread-local state through `set` and `get` methods. State is set and
//! retrieved in a type-directed fashion: `state` allows _one_ instance of a
//! given type to be stored in global storage as well as _n_ instances of a
//! given type to be stored in _n_ thread-local-storage slots. This makes
//! `state` ideal for singleton instances, global configuration, and
//! once-initialized state.
//!
//! ## Usage
//!
//! Include `state` in your `Cargo.toml` `[dependencies]`:
//!
//! ```toml
//! [dependencies]
//! state = "0.1"
//! ```
//!
//! Thread-local state management is not enabled by default. You can enable it
//! via the "tls" feature:
//!
//! ```toml
//! [dependencies]
//! state = { version = "0.1", features = ["tls"] }
//! ```
//!
//! ## Global State
//!
//! Global state is set via the [set](fn.set.html) function and retrieved via
//! the [get](fn.get.html) function. The type of the value being set must be
//! thread-safe and transferable across thread boundaries. In other words, it
//! must satisfy `Sync + Send + 'static`.
//!
//! ### Example
//!
//! Set and later retrieve a value of type T:
//!
//! ```rust
//! # struct T;
//! # impl T { fn new() -> T { T } }
//! state::set(T::new());
//! state::get::<T>();
//! ```
//!
//! ## Thread-Local State
//!
//! Thread-local state is set via the [set_local](fn.set_local.html) function
//! and retrieved via the [get_local](fn.get_local.html) function. The type of
//! the value being set must be transferable across thread boundaries but need
//! not be thread-safe. In other words, it must satisfy `Send + 'static` but not
//! necessarily `Sync`. Values retrieved from thread-local state are exactly
//! that: local to the current thread. As such, you cannot use thread-local
//! state to synchronize across multiple threads.
//!
//! Thread-local state is initialized on an as-needed basis. The function used
//! to initialize the thread-local state is passed in as an argument to
//! `set_local`. When the state is retrieved from a thread for the first time,
//! the function is executed to generate the initial value. The function is
//! executed at most once per thread. The same function is used for
//! initialization across all threads.
//!
//! **Note:** Rust reuses thread IDs across multiple threads. This means that is
//! possible to set thread-local state in thread A, have that thread die, start
//! a new thread B, and access the state set in A in B.
//!
//! ### Example
//!
//! Set and later retrieve a value of type T:
//!
//! ```rust
//! # struct T;
//! # impl T { fn new() -> T { T } }
//! state::set_local(|| T::new());
//! state::get_local::<T>();
//! ```
//!
//! ## Use Cases
//!
//! `state` is an optimal solution in several scenarios.
//!
//! ### Singleton
//!
//! Suppose you have the following structure which is initialized in `main`
//! after receiving input from the user:
//!
//! ```rust
//! struct Configuration {
//!     name: String,
//!     number: isize,
//!     verbose: bool
//! }
//!
//! fn main() {
//!     let config = Configuration {
//!         /* fill in structure at run-time from user input */
//! #        name: "Sergio".to_string(),
//! #        number: 1,
//! #        verbose: true
//!     };
//! }
//! ```
//!
//! You'd like to access this structure later, at any point in the program.
//! Prior to `state`, assuming you needed to setup the structure after program
//! start, your options were:
//!
//!   1. Use a `static mut` and `unsafe` to set an `Option<Configuration>` to
//!      `Some`. Retrieve by checking for `Some`.
//!   2. Use `lazy_static` with a `RwLock` to set an `Option<Configuration>`
//!      to `Some`. Retrieve by `lock`ing and checking for `Some`.
//!
//! With `state`, you simply call `state::set` and `state::get`, as follows:
//!
//! ```rust
//! # struct Configuration { name: String, number: isize, verbose: bool }
//!
//! fn main() {
//!     let config = Configuration {
//!         /* fill in structure at run-time from user input */
//! #        name: "Sergio".to_string(),
//! #        number: 1,
//! #        verbose: true
//!     };
//!
//!     // Make the config avaiable globally.
//!     state::set(config);
//!
//!     /* at any point later in the program */
//!     let config = state::get::<Configuration>();
//! }
//! ```
//!
//! ### Mutable, thread-local data
//!
//! It is entirely safe to have an unsynchronized global object, as long as that
//! object is accessible to a single thread at a time: the standard library's
//! `thread_local!` macro allows this behavior to be encapsulated. `state`
//! provides another, arguably simpler solution.
//!
//! Say you want to count the number of invocations to a function per thread.
//! You store the invocations in a `struct InvokeCount(Cell<usize>)` and use
//! `invoke_count.0.set(invoke_count.0.get() + 1)` to increment the count. The
//! following implements this using `state`:
//!
//! ```rust
//! # use std::cell::Cell;
//! # use std::thread;
//! struct InvokeCount(Cell<usize>);
//!
//! fn function_to_measure() {
//!     let count = state::get_local::<InvokeCount>();
//!     count.0.set(count.0.get() + 1);
//! }
//!
//! fn main() {
//!     // setup the initializer for thread-local state
//!     state::set_local(|| InvokeCount(Cell::new(0)));
//!
//!     // spin up many threads that call `function_to_measure`.
//!     let mut threads = vec![];
//!     for i in 0..10 {
//!         threads.push(thread::spawn(|| {
//!             function_to_measure();
//!             state::get_local::<InvokeCount>().0.get()
//!         }));
//!     }
//!
//!     // retrieve the thread-local counts
//!     let counts: Vec<usize> = threads.into_iter()
//!         .map(|t| t.join().unwrap())
//!         .collect();
//! }
//! ```
//!
//! ## Performance
//!
//! `state` is heavily tuned to perform near-optimally when there are many
//! threads. On average, `state` performs slightly worse than `lazy_static` when
//! only a _single_ thread is used to access a global variable, and slightly
//! better than `lazy_static` when _many_ threads are used to access a global
//! variable. Keep in mind that `state` allows global initialization at _any_
//! point in the program, while `lazy_static` initialization must be declared
//! a priori. In other words, `state`'s abilities are a superset of those in
//! `lazy_static`.
//!
//! ## When To Use
//!
//! You should avoid using `state` as much as possible. Instead, prefer to pass
//! state manually through your program.
//!
mod state;
mod ident_hash;

use std::sync::{Once, ONCE_INIT};

use state::State;

static STATE_INIT: Once = ONCE_INIT;
static mut STATE: *const State = 0 as *const State;

// Initializes the `STATE` global variable. This _MUST_ be called before
// accessing the variable!
#[inline(always)]
unsafe fn ensure_state_initialized() {
    STATE_INIT.call_once(|| {
        STATE = Box::into_raw(Box::new(State::new()));
    });
}

/// Sets the global state for type `T` if it has not been set before.
///
/// If the state for `T` has previously been set, the state is unchanged and
/// `false` is returned. Returns `true` if `state` is successfully set as the
/// state for `T`.
///
/// # Example
///
/// ```rust
/// use std::sync::atomic::AtomicUsize;
///
/// struct MyState(AtomicUsize);
///
/// assert_eq!(state::set(MyState(AtomicUsize::new(0))), true);
/// assert_eq!(state::set(MyState(AtomicUsize::new(1))), false);
/// ```
pub fn set<T: Send + Sync + 'static>(state: T) -> bool {
    unsafe {
        ensure_state_initialized();
        (*STATE).set(state)
    }
}

/// Attempts to retrieve the global state for type `T`.
///
/// Returns `Some` if the state has previously been [set](fn.set.html).
/// Otherwise returns `None`.
///
/// # Example
///
/// ```rust
/// use std::sync::atomic::{AtomicUsize, Ordering};
///
/// struct MyState(AtomicUsize);
///
/// // State for `T` is initially unset.
/// assert!(state::try_get::<MyState>().is_none());
///
/// state::set(MyState(AtomicUsize::new(0)));
///
/// let my_state = state::try_get::<MyState>().expect("MyState");
/// assert_eq!(my_state.0.load(Ordering::Relaxed), 0);
/// ```
#[inline(always)]
pub fn try_get<T: Send + Sync + 'static>() -> Option<&'static T> {
    unsafe {
        ensure_state_initialized();
        (*STATE).try_get::<T>()
    }
}

/// Retrieves the global state for type `T`.
///
/// # Panics
///
/// Panics if the state for type `T` has not previously been [set](fn.set.html).
/// Use [try_get](fn.try_get.html) for a non-panicking version.
///
/// # Example
///
/// ```rust
/// use std::sync::atomic::{AtomicUsize, Ordering};
///
/// struct MyState(AtomicUsize);
///
/// state::set(MyState(AtomicUsize::new(0)));
///
/// let my_state = state::get::<MyState>();
/// assert_eq!(my_state.0.load(Ordering::Relaxed), 0);
/// ```
pub fn get<T: Send + Sync + 'static>() -> &'static T {
    unsafe {
        ensure_state_initialized();
        (*STATE).try_get::<T>().expect("state:get(): absent type")
    }
}

/// Sets the thread-local state for type `T` if it has not been set before.
///
/// The state for type `T` will be initialized via the `state_init` function as
/// needed. If the state for `T` has previously been set, the state is unchanged
/// and `false` is returned. Returns `true` if the thread-local state is
/// successfully set to be initialized with `state_init`.
///
/// # Example
///
/// ```rust
/// use std::cell::Cell;
///
/// struct MyState(Cell<usize>);
///
/// assert_eq!(state::set_local(|| MyState(Cell::new(1))), true);
/// assert_eq!(state::set_local(|| MyState(Cell::new(2))), false);
/// ```
#[cfg(feature = "tls")]
pub fn set_local<T, F>(state_init: F) -> bool
    where T: Send + 'static,
          F: Fn() -> T + 'static
{
    unsafe {
        ensure_state_initialized();
        (*STATE).set_local::<T, F>(state_init)
    }
}

/// Attempts to retrieve the thread-local state for type `T`.
///
/// Returns `Some` if the state has previously been set via
/// [set_local](fn.set_local.html). Otherwise returns `None`.
///
/// # Example
///
/// ```rust
/// use std::cell::Cell;
///
/// struct MyState(Cell<usize>);
///
/// state::set_local(|| MyState(Cell::new(10)));
///
/// let my_state = state::try_get_local::<MyState>().expect("MyState");
/// assert_eq!(my_state.0.get(), 10);
/// ```
#[cfg(feature = "tls")]
pub fn try_get_local<T: Send + 'static>() -> Option<&'static T> {
    unsafe {
        ensure_state_initialized();
        (*STATE).try_get_local::<T>()
    }
}

/// Retrieves the thread-local state for type `T`.
///
/// # Panics
///
/// Panics if the thread-local state for type `T` has not previously been set
/// via [set_local](fn.set_local.html). Use
/// [try_get_local](fn.try_get_local.html) for a non-panicking version.
///
/// # Example
///
/// ```rust
/// use std::cell::Cell;
///
/// struct MyState(Cell<usize>);
///
/// state::set_local(|| MyState(Cell::new(10)));
///
/// let my_state = state::get_local::<MyState>();
/// assert_eq!(my_state.0.get(), 10);
/// ```
#[cfg(feature = "tls")]
pub fn get_local<T: Send + 'static>() -> &'static T {
    unsafe {
        ensure_state_initialized();
        (*STATE).try_get_local::<T>() .expect("state::get_local(): absent type")
    }
}