1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
//! # startin
//!
//! A Delaunay triangulator where the input are 2.5D points, the DT is computed in 2D but the elevation of the vertices are kept.
//! This is used mostly for the modelling of terrains.
//! Constructing a 2D Delaunay triangulation is also possible.
//!
//! The construction algorithm used is an incremental insertion based on flips, and the data structure is a cheap implementation of the star-based structure defined in [Blandford et al. (2003)](https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.6823), cheap because the link of each vertex is stored a simple array (`Vec`) and not in an optimised blob like they did.
//! It results in a pretty fast library (comparison will come at some point), but it uses more space than the optimised one.
//!
//! The deletion of a vertex is also possible. The algorithm implemented is a modification of the one of [Mostafavi, Gold, and Dakowicz (2003)](https://doi.org/10.1016/S0098-3004(03)00017-7). The ears are filled by flipping, so it's in theory more robust.
//! I have also extended the algorithm to allow the deletion of vertices on the boundary of the convex hull.
//! The algorithm is sub-optimal, but in practice the number of neighbours of a given vertex in a DT is only 6, so it doesn't really matter.
//!
//! Robust arithmetic for the geometric predicates are used ([Shewchuk's predicates](https://www.cs.cmu.edu/~quake/robust.html), well the [Rust port of the code (robust crate)](https://crates.io/crates/robust)), so startin is robust and shouldn't crash (touch wood).
//!
//! There are a few interpolation functions implemented: (1) nearest-neighbour, (2) linear in TIN, (3) Laplace, (4) natural neighbour (aka Sibson's interpolation), (5) IDW.
//!
//!
//! # Web-demo with WebAssembly
//!
//! Rust can be compiled to [WebAssembly](https://www.rust-lang.org/what/wasm), and you can see a demo of some of the possibilities of startin (all computations are done locally and it's fast!).
//!
//! [--> web-demo](https://hugoledoux.github.io/startin_wasm/)
//!
//!
//! # Python bindings
//!
//! If you prefer Python, I made bindings: [https://github.com/hugoledoux/startinpy/](https://github.com/hugoledoux/startinpy/)
//!
//! There are a few more functions (eg reading GeoTIFF/LAZ, exporting GeoJSON/CityJSON) and it works with Numpy.
//!
//!
//! # C interface
//!
//! A basic C interface is available in `src/c_interface.rs`, to compile it:
//!
//! ```bash
//! cargo build --features c_api
//! ```
//!
//! # Usage
//!
//! ```rust
//! extern crate startin;
//!
//! fn main() {
//!     let mut pts: Vec<[f64; 3]> = Vec::new();
//!     pts.push([20.0, 30.0, 2.0]);
//!     pts.push([120.0, 33.0, 12.5]);
//!     pts.push([124.0, 222.0, 7.65]);
//!     pts.push([20.0, 133.0, 21.0]);
//!     pts.push([60.0, 60.0, 33.0]);
//!     let mut dt = startin::Triangulation::new();
//!     dt.insert(&pts, startin::InsertionStrategy::AsIs);
//!     println!("{}", dt);
//!     //-- print all the vertices
//!     for (i, each) in dt.all_vertices().iter().enumerate() {
//!         // skip the first one, the infinite vertex
//!         if i > 0 {
//!             println!("#{}: ({:.3}, {:.3}, {:.3})", i, each[0], each[1], each[2]);
//!         }
//!     }
//!     //-- insert a new vertex
//!     let re = dt.insert_one_pt(22.2, 33.3, 4.4);
//!     match re {
//!         Ok(_v) => println!(
//!             "Inserted new point, now the DT has {} vertices",
//!             dt.number_of_vertices()
//!         ),
//!         Err(v) => println!("Duplicate of vertex #{}, not inserted", v),
//!     }
//!     //-- remove it
//!     match dt.remove(6) {
//!         Ok(num) => println!("Vertex deleted, now the DT has {} vertices", num),
//!         Err(why) => println!("!!! Deletion error: {:?}", why),
//!     }
//!     //-- get the convex hull
//!     let ch = dt.convex_hull();
//!     println!("Convex hull: {:?}", ch);
//!     //-- fetch triangle containing (x, y)
//!     match dt.locate(50.0, 50.0) {
//!         Ok(tr) => println!("The triangle is {}", tr),
//!         Err(why) => println!("Error: {:?}", why),
//!     }
//!     //-- interpolate with Laplace interpolation at 2 locations
//!     let locs = vec![[51.0, 22.0], [50.3, 19.9]];
//!     let interpolant = startin::interpolation::Laplace {};
//!     let zs = startin::interpolation::interpolate(&interpolant, &mut dt, &locs);
//!     for z in &zs {
//!         match z {
//!             Ok(value) => println!("z = {}", value),
//!             Err(why) => println!("Interplation impossible: {:?}", why),
//!         }
//!     }
//!
//!     //-- save the triangulation in geojson for debug purposes
//!     let _re = dt.write_obj("/home/elvis/tr.obj".to_string());
//! }
//! ```

pub mod geom;
pub mod interpolation;

#[cfg(feature = "c_api")]
mod c_interface;

use rand::prelude::thread_rng;
use rand::Rng;
use std::fmt;
use std::fs::File;
use std::io::Write;

/// Errors that arise while using startin
#[derive(Debug, PartialEq)]
pub enum StartinError {
    EmptyTriangulation,
    OutsideConvexHull,
    SearchCircleEmpty,
    TriangleNotPresent,
    VertexInfinite,
    VertexRemoved,
    VertexUnknown,
}

/// Possibilities for the insertion (with `insert()`)
pub enum InsertionStrategy {
    AsIs,
    BBox,
    // Sprinkle,
    // ConBRIO,
}

/// A Triangle is a triplet of indices
#[derive(Debug, PartialEq, Clone)]
pub struct Triangle {
    pub v: [usize; 3],
}

impl Triangle {
    /// Checks whether a Triangle is "infinite",
    /// ie if one its vertices is the infinite vertex
    fn is_infinite(&self) -> bool {
        if self.v[0] == 0 || self.v[1] == 0 || self.v[2] == 0 {
            return true;
        }
        return false;
    }
}

impl fmt::Display for Triangle {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "({}, {}, {})", self.v[0], self.v[1], self.v[2])
    }
}

//----------------------
#[repr(C)]
#[derive(Debug, Clone)]
struct Link(Vec<usize>);

impl Link {
    fn new() -> Link {
        // Link(Vec::new())
        Link(Vec::with_capacity(8))
    }
    fn len(&self) -> usize {
        self.0.len()
    }
    fn is_empty(&self) -> bool {
        if self.0.len() == 0 {
            true
        } else {
            false
        }
    }
    fn add(&mut self, v: usize) {
        self.0.push(v);
    }
    fn insert_after_v(&mut self, v: usize, after: usize) {
        let pos = self.0.iter().position(|&x| x == after).unwrap();
        self.0.insert(pos + 1, v);
    }
    fn delete(&mut self, v: usize) {
        let re = self.0.iter().position(|&x| x == v);
        if re != None {
            self.0.remove(re.unwrap());
        }
    }
    fn replace(&mut self, v: usize, newv: usize) {
        let re = self.0.iter().position(|&x| x == v);
        if re != None {
            self.0[re.unwrap()] = newv;
            // self.0.remove(re.unwrap());
        }
    }
    fn infinite_first(&mut self) {
        let re = self.0.iter().position(|&x| x == 0);
        if re != None {
            let posinf = re.unwrap();
            if posinf == 0 {
                return;
            }
            let mut newstar: Vec<usize> = Vec::new();
            for j in posinf..self.0.len() {
                newstar.push(self.0[j]);
            }
            for j in 0..posinf {
                newstar.push(self.0[j]);
            }
            // println!("newstar: {:?}", newstar);
            self.0 = newstar;
        }
    }
    fn clear(&mut self) {
        self.0.clear();
    }
    fn contains_infinite_vertex(&self) -> bool {
        let pos = self.0.iter().position(|&x| x == 0);
        if pos == None {
            return false;
        } else {
            return true;
        }
    }
    fn next_index(&self, i: usize) -> usize {
        if i == (self.0.len() - 1) {
            0
        } else {
            i + 1
        }
    }
    fn prev_index(&self, i: usize) -> usize {
        if i == 0 {
            self.0.len() - 1
        } else {
            i - 1
        }
    }
    fn get_index(&self, v: usize) -> Option<usize> {
        return self.0.iter().position(|&x| x == v);
    }
    fn get_next_vertex(&self, v: usize) -> Option<usize> {
        let re = self.get_index(v);
        if re.is_none() {
            return None;
        }
        let pos = re.unwrap();
        if pos == (self.0.len() - 1) {
            return Some(self.0[0]);
        } else {
            return Some(self.0[pos + 1]);
        }
    }
    fn get_prev_vertex(&self, v: usize) -> Option<usize> {
        let re = self.get_index(v);
        if re.is_none() {
            return None;
        }
        let pos = re.unwrap();
        if pos == 0 {
            return Some(self.0[self.0.len() - 1]);
        } else {
            return Some(self.0[pos - 1]);
        }
    }
    fn iter(&self) -> Iter {
        Iter(Box::new(self.0.iter()))
    }
}

//-- taken from https://stackoverflow.com/questions/40668074/am-i-incorrectly-implementing-intoiterator-for-a-reference-or-is-this-a-rust-bug
struct Iter<'a>(Box<dyn Iterator<Item = &'a usize> + 'a>);

impl<'a> Iterator for Iter<'a> {
    type Item = &'a usize;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next()
    }
}

impl std::ops::Index<usize> for Link {
    type Output = usize;
    fn index(&self, idx: usize) -> &usize {
        &self.0[idx as usize]
    }
}

impl fmt::Display for Link {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        // fmt.write_str("pt: {}\n", self.pt)?;
        fmt.write_str(&format!("link: {:?}\n", self.0))?;
        Ok(())
    }
}

/// A triangulation is a collection of Stars, each Star has its (x,y,z)
/// and a Link (an array of adjacent vertices, ordered CCW)
#[repr(C)]
struct Star {
    pt: [f64; 3],
    link: Link,
}

impl Star {
    fn new(x: f64, y: f64, z: f64) -> Star {
        let l = Link::new();
        Star {
            pt: [x, y, z],
            link: l,
        }
    }
    fn is_deleted(&self) -> bool {
        self.link.is_empty()
    }
}

/// Represents a triangulation
#[repr(C)]
pub struct Triangulation {
    stars: Vec<Star>,
    snaptol: f64,
    cur: usize,
    is_init: bool,
    jump_and_walk: bool,
    robust_predicates: bool,
    removed_indices: Vec<usize>,
}

impl Triangulation {
    pub fn new() -> Triangulation {
        // TODO: allocate a certain number?
        // let mut l: Vec<Star> = Vec::with_capacity(100000);
        let mut l: Vec<Star> = Vec::new();
        l.push(Star::new(f64::INFINITY, f64::INFINITY, f64::INFINITY));
        let es: Vec<usize> = Vec::new();
        Triangulation {
            stars: l,
            snaptol: 0.001,
            cur: 0,
            is_init: false,
            jump_and_walk: false,
            robust_predicates: true,
            removed_indices: es,
        }
    }

    fn insert_one_pt_init_phase(&mut self, x: f64, y: f64, z: f64) -> Result<usize, usize> {
        let p: [f64; 3] = [x, y, z];
        for i in 1..self.stars.len() {
            if geom::distance2d_squared(&self.stars[i].pt, &p) <= (self.snaptol * self.snaptol) {
                return Err(i);
            }
        }
        self.collect_garbage();
        //-- add point to Triangulation and create its empty star
        self.stars.push(Star::new(x, y, z));
        //-- form the first triangles (finite + infinite)
        let l = self.stars.len();
        if l >= 4 {
            let a = l - 3;
            let b = l - 2;
            let c = l - 1;
            let re = geom::orient2d(
                &self.stars[a].pt,
                &self.stars[b].pt,
                &self.stars[c].pt,
                self.robust_predicates,
            );
            if re == 1 {
                // println!("init: ({},{},{})", a, b, c);
                self.stars[0].link.add(a);
                self.stars[0].link.add(c);
                self.stars[0].link.add(b);
                self.stars[a].link.add(0);
                self.stars[a].link.add(b);
                self.stars[a].link.add(c);
                self.stars[b].link.add(0);
                self.stars[b].link.add(c);
                self.stars[b].link.add(a);
                self.stars[c].link.add(0);
                self.stars[c].link.add(a);
                self.stars[c].link.add(b);
                self.is_init = true;
            } else if re == -1 {
                // println!("init: ({},{},{})", a, c, b);
                self.stars[0].link.add(a);
                self.stars[0].link.add(b);
                self.stars[0].link.add(c);
                self.stars[a].link.add(0);
                self.stars[a].link.add(c);
                self.stars[a].link.add(b);
                self.stars[b].link.add(0);
                self.stars[b].link.add(a);
                self.stars[b].link.add(c);
                self.stars[c].link.add(0);
                self.stars[c].link.add(b);
                self.stars[c].link.add(a);
                self.is_init = true;
            }
        }
        self.cur = l - 1;
        if self.is_init == true {
            //-- insert the previous vertices in the dt
            for j in 1..(l - 3) {
                let tr = self.walk(&self.stars[j].pt);
                // println!("found tr: {}", tr);
                self.flip13(j, &tr);
                self.update_dt(j);
            }
        }
        Ok(self.cur)
    }

    /// Set a snap tolerance when inserting new points: if the newly inserted
    /// one is closer than `snap_tol` to another one, then it is not inserted.
    /// Avoids having very close vertices (like at 0.00007mm)
    /// Default is 0.001unit (thus 1mm for most datasets).
    pub fn set_snap_tolerance(&mut self, snaptol: f64) -> f64 {
        if snaptol > 0.0 {
            self.snaptol = snaptol;
        }
        self.snaptol
    }

    pub fn get_snap_tolerance(&self) -> f64 {
        self.snaptol
    }

    /// Activate/deactive the jump-and-walk strategy for [`Triangulation::locate()`].
    /// (deactivated by default)
    /// If deactivated, then the walk starts from the last inserted triangle.
    pub fn set_jump_and_walk(&mut self, b: bool) {
        self.jump_and_walk = b;
    }

    /// Is using robut predicates (with [crate robust](https://docs.rs/robust))?
    /// (activated by default)
    pub fn is_using_robust_predicates(&self) -> bool {
        self.robust_predicates
    }

    /// Activate/deactivate [robust predictates](https://docs.rs/robust)
    pub fn use_robust_predicates(&mut self, b: bool) {
        self.robust_predicates = b;
    }

    /// Insert a [`Vec`] of [`array`] (`[f64; 3]`) values.
    /// If [`InsertionStrategy::AsIs`] is used, then [`Triangulation::insert_one_pt()`] is called
    /// for each point in the order given.
    ///
    /// # Arguments
    ///
    /// * `pts` - a [`Vec`] of `[f64; 3]`
    /// * `strategy` - the [`InsertionStrategy`] to use for the insertion
    pub fn insert(&mut self, pts: &Vec<[f64; 3]>, strategy: InsertionStrategy) {
        match strategy {
            InsertionStrategy::BBox => {
                //-- find the bbox
                let mut bbox = geom::bbox2d(&pts);
                //-- "padding" of the bbox to avoid conflicts
                bbox[0] = bbox[0] - 10.0;
                bbox[1] = bbox[1] - 10.0;
                bbox[2] = bbox[2] + 10.0;
                bbox[3] = bbox[3] + 10.0 ;
                self.insert_with_bbox(&pts, &bbox);
            }
            InsertionStrategy::AsIs => {
                for each in pts {
                    let _re = self.insert_one_pt(each[0], each[1], each[2]);
                }
            }
            // InsertionStrategy::Sprinkle => println!("Sprinkle not implemented yet"),
            // InsertionStrategy::ConBRIO => println!("ConBRIO not implemented yet"),
        }
    }

    fn insert_with_bbox(&mut self, pts: &Vec<[f64; 3]>, bbox: &[f64; 4]) {
        let mut c4: Vec<usize> = Vec::new();
        //-- insert the 4 corners
        c4.push(self.insert_one_pt(bbox[0], bbox[1], 0.0).unwrap());
        c4.push(self.insert_one_pt(bbox[2], bbox[1], 0.0).unwrap());
        c4.push(self.insert_one_pt(bbox[2], bbox[3], 0.0).unwrap());
        c4.push(self.insert_one_pt(bbox[0], bbox[3], 0.0).unwrap());
        for each in pts {
            let _re = self.insert_one_pt(each[0], each[1], each[2]);
        }
        //-- remove the 4 corners
        for each in &c4 {
            let _re = self.remove(*each);
        }
        //-- collect garbage: remove the 4 added vertices and "shift" all the vertex ids
        self.collect_garbage();
    }

    /// Insert the point (`px`, `py`, `pz`) in the triangulation.
    /// Returns the vertex ID of the point if the vertex didn't exist.
    /// If there was a vertex at that location, an Error is thrown with the already
    /// existing vertex ID.
    pub fn insert_one_pt(&mut self, px: f64, py: f64, pz: f64) -> Result<usize, usize> {
        if self.is_init == false {
            return self.insert_one_pt_init_phase(px, py, pz);
        }
        //-- walk
        let p: [f64; 3] = [px, py, pz];
        let tr = self.walk(&p);
        // println!("STARTING TR: {}", tr);
        if geom::distance2d_squared(&self.stars[tr.v[0]].pt, &p) <= (self.snaptol * self.snaptol) {
            return Err(tr.v[0]);
        }
        if geom::distance2d_squared(&self.stars[tr.v[1]].pt, &p) <= (self.snaptol * self.snaptol) {
            return Err(tr.v[1]);
        }
        if geom::distance2d_squared(&self.stars[tr.v[2]].pt, &p) <= (self.snaptol * self.snaptol) {
            return Err(tr.v[2]);
        }
        //-- ok we now insert the point in the data structure
        let pi: usize;
        if self.removed_indices.is_empty() == true {
            self.stars.push(Star::new(px, py, pz));
            pi = self.stars.len() - 1;
        } else {
            // self.stars.push(Star::new(px, py, pz));
            pi = self.removed_indices.pop().unwrap();
            self.stars[pi].pt[0] = px;
            self.stars[pi].pt[1] = py;
            self.stars[pi].pt[2] = pz;
        }
        //-- flip13()
        self.flip13(pi, &tr);
        //-- update_dt()
        self.update_dt(pi);

        self.cur = pi;
        Ok(pi)
    }

    fn update_dt(&mut self, pi: usize) {
        // println!("--> Update DT");
        let mut mystack: Vec<Triangle> = Vec::new();
        mystack.push(Triangle {
            v: [pi, self.stars[pi].link[0], self.stars[pi].link[1]],
        });
        mystack.push(Triangle {
            v: [pi, self.stars[pi].link[1], self.stars[pi].link[2]],
        });
        mystack.push(Triangle {
            v: [pi, self.stars[pi].link[2], self.stars[pi].link[0]],
        });

        loop {
            let tr = match mystack.pop() {
                None => break,
                Some(x) => x,
            };
            let opposite = self.get_opposite_vertex(&tr);
            // println!("stacked: {} {}", tr, opposite);

            if tr.is_infinite() == true {
                let mut a: i8 = 0;
                if tr.v[0] == 0 {
                    a = geom::orient2d(
                        &self.stars[opposite].pt,
                        &self.stars[tr.v[1]].pt,
                        &self.stars[tr.v[2]].pt,
                        self.robust_predicates,
                    );
                } else if tr.v[1] == 0 {
                    a = geom::orient2d(
                        &self.stars[tr.v[0]].pt,
                        &self.stars[opposite].pt,
                        &self.stars[tr.v[2]].pt,
                        self.robust_predicates,
                    );
                } else if tr.v[2] == 0 {
                    a = geom::orient2d(
                        &self.stars[tr.v[0]].pt,
                        &self.stars[tr.v[1]].pt,
                        &self.stars[opposite].pt,
                        self.robust_predicates,
                    );
                }
                // println!("TODO: INCIRCLE FOR INFINITY {}", a);
                if a > 0 {
                    // println!("FLIPPED0 {} {}", tr, opposite);
                    let (ret0, ret1) = self.flip22(&tr, opposite);
                    mystack.push(ret0);
                    mystack.push(ret1);
                }
            } else {
                if opposite == 0 {
                    //- if insertion on CH then break the edge, otherwise do nothing
                    //-- TODO sure the flips are okay here?
                    if geom::orient2d(
                        &self.stars[tr.v[0]].pt,
                        &self.stars[tr.v[1]].pt,
                        &self.stars[tr.v[2]].pt,
                        self.robust_predicates,
                    ) == 0
                    {
                        // println!("FLIPPED1 {} {}", tr, 0);
                        let (ret0, ret1) = self.flip22(&tr, 0);
                        mystack.push(ret0);
                        mystack.push(ret1);
                    }
                } else {
                    if geom::incircle(
                        &self.stars[tr.v[0]].pt,
                        &self.stars[tr.v[1]].pt,
                        &self.stars[tr.v[2]].pt,
                        &self.stars[opposite].pt,
                        self.robust_predicates,
                    ) > 0
                    {
                        // println!("FLIPPED2 {} {}", tr, opposite);
                        let (ret0, ret1) = self.flip22(&tr, opposite);
                        mystack.push(ret0);
                        mystack.push(ret1);
                    }
                }
            }
        }
    }

    fn flip13(&mut self, pi: usize, tr: &Triangle) {
        self.stars[pi].link.add(tr.v[0]);
        self.stars[pi].link.add(tr.v[1]);
        self.stars[pi].link.add(tr.v[2]);
        self.stars[tr.v[0]].link.insert_after_v(pi, tr.v[1]);
        self.stars[tr.v[1]].link.insert_after_v(pi, tr.v[2]);
        self.stars[tr.v[2]].link.insert_after_v(pi, tr.v[0]);
        //-- put infinite vertex first in list
        // self.stars[pi].link.infinite_first();
    }

    fn flip31(&mut self, v: usize) {
        // println!("FLIP31");
        let mut ns: Vec<usize> = Vec::new();
        for each in self.stars[v].link.iter() {
            ns.push(*each);
        }
        for n in ns.iter() {
            self.stars[*n].link.delete(v);
        }
        self.stars[v].link.clear();
        self.stars[v].pt[0] = f64::NAN;
        self.stars[v].pt[1] = f64::NAN;
        self.stars[v].pt[2] = f64::NAN;
        self.removed_indices.push(v);
        if ns[0] != 0 {
            self.cur = ns[0];
        } else if ns[1] != 0 {
            self.cur = ns[1];
        } else if ns[2] != 0 {
            self.cur = ns[2];
        }
    }

    /// Returns the coordinates of the vertex v.
    /// A [`StartinError`] is returned if `vi` doesn't exist
    /// or is a removed vertex.
    pub fn get_point(&self, vi: usize) -> Result<Vec<f64>, StartinError> {
        match self.is_vertex_removed(vi) {
            Err(why) => return Err(why),
            Ok(b) => match b {
                true => return Err(StartinError::VertexRemoved),
                false => Ok(self.stars[vi].pt.to_vec()),
            },
        }
    }

    /// Returns the 3 adjacents (finite + infinite) [`Triangle`] to a triangle.
    pub fn adjacent_triangles_to_triangle(
        &self,
        tr: &Triangle,
    ) -> Result<Vec<Triangle>, StartinError> {
        if self.is_triangle(&tr) == false || tr.is_infinite() == true {
            return Err(StartinError::TriangleNotPresent);
        }
        let mut trs: Vec<Triangle> = Vec::new();
        let mut opp = self.stars[tr.v[2]].link.get_next_vertex(tr.v[1]).unwrap();
        trs.push(Triangle {
            v: [tr.v[1], opp, tr.v[2]],
        });
        opp = self.stars[tr.v[0]].link.get_next_vertex(tr.v[2]).unwrap();
        trs.push(Triangle {
            v: [tr.v[2], opp, tr.v[0]],
        });
        opp = self.stars[tr.v[1]].link.get_next_vertex(tr.v[0]).unwrap();
        trs.push(Triangle {
            v: [tr.v[0], opp, tr.v[1]],
        });
        Ok(trs)
    }

    /// Returns a [`Vec`] of [`Triangle`]s (finite + infinite) to the vertex `vi`.
    pub fn incident_triangles_to_vertex(&self, vi: usize) -> Result<Vec<Triangle>, StartinError> {
        match self.is_vertex_removed(vi) {
            Err(why) => return Err(why),
            Ok(b) => match b {
                true => return Err(StartinError::VertexRemoved),
                false => {
                    let mut trs: Vec<Triangle> = Vec::new();
                    for (i, each) in self.stars[vi].link.iter().enumerate() {
                        let j = self.stars[vi].link.next_index(i);
                        trs.push(Triangle {
                            v: [vi, *each, self.stars[vi].link[j]],
                        });
                    }
                    Ok(trs)
                }
            },
        }
    }

    /// Returns the degree of the vertex with ID `vi`.
    pub fn degree(&self, vi: usize) -> Result<usize, StartinError> {
        match self.is_vertex_removed(vi) {
            Err(why) => return Err(why),
            Ok(b) => match b {
                true => return Err(StartinError::VertexRemoved),
                false => return Ok(self.stars[vi].link.len()),
            },
        }
    }

    /// Returns a list (`Vec<usize>`) (ordered CCW) of the adjacent vertices to `vi`.
    pub fn adjacent_vertices_to_vertex(&self, vi: usize) -> Result<Vec<usize>, StartinError> {
        match self.is_vertex_removed(vi) {
            Err(why) => return Err(why),
            Ok(b) => match b {
                true => return Err(StartinError::VertexRemoved),
                false => {
                    let mut adjs: Vec<usize> = Vec::new();
                    for each in self.stars[vi].link.iter() {
                        adjs.push(*each);
                    }
                    return Ok(adjs);
                }
            },
        }
    }

    /// Returns whether a triplet of indices is a [`Triangle`] in the triangulation.
    pub fn is_triangle(&self, tr: &Triangle) -> bool {
        if tr.v[0] >= self.stars.len() || tr.v[1] >= self.stars.len() || tr.v[2] >= self.stars.len()
        {
            return false;
        }
        let re = self.stars[tr.v[0]].link.get_next_vertex(tr.v[1]);
        if re.is_none() {
            return false;
        } else {
            if re.unwrap() == tr.v[2] {
                return true;
            } else {
                return false;
            }
        }
    }

    /// Returns whether a [`Triangle`] is finite, or not
    pub fn is_finite(&self, tr: &Triangle) -> bool {
        if tr.is_infinite() {
            return false;
        } else {
            return true;
        }
    }

    /// Returns some statistics about the triangulation.
    pub fn statistics_degree(&self) -> (f64, usize, usize) {
        let mut total: f64 = 0.0;
        let mut min: usize = usize::max_value();
        let mut max: usize = usize::min_value();
        for i in 1..self.stars.len() {
            total = total + self.stars[i].link.len() as f64;
            if self.stars[i].link.len() > max {
                max = self.stars[i].link.len();
            }
            if self.stars[i].link.len() < min {
                min = self.stars[i].link.len();
            }
        }
        total = total / (self.stars.len() - 2) as f64;
        return (total, min, max);
    }

    /// Returns number of finite vertices in the triangulation.
    /// The removed vertices are not counted.
    pub fn number_of_vertices(&self) -> usize {
        //-- number of finite vertices
        self.stars.len() - 1 - self.removed_indices.len()
    }

    /// Returns number of finite triangles in the triangulation.
    pub fn number_of_triangles(&self) -> usize {
        //-- number of finite triangles
        let mut count: usize = 0;
        for (i, star) in self.stars.iter().enumerate() {
            for (j, value) in star.link.iter().enumerate() {
                if i < *value {
                    let k = star.link[star.link.next_index(j)];
                    if i < k {
                        let tr = Triangle { v: [i, *value, k] };
                        if tr.is_infinite() == false {
                            count = count + 1;
                        }
                    }
                }
            }
        }
        count
    }

    /// Returns the number of vertices which are marked as "removed"
    pub fn number_of_removed_vertices(&self) -> usize {
        self.removed_indices.len()
    }

    /// Returns whether the vertex `vi` is removed or not.
    pub fn is_vertex_removed(&self, vi: usize) -> Result<bool, StartinError> {
        if vi >= self.stars.len() {
            return Err(StartinError::VertexUnknown);
        }
        Ok(self.stars[vi].is_deleted())
    }

    /// Returns the convex hull of the dataset, oriented CCW.
    /// It is a list of vertex indices (first != last)
    pub fn convex_hull(&self) -> Vec<usize> {
        let mut re: Vec<usize> = Vec::new();
        for x in self.stars[0].link.iter() {
            re.push(*x);
        }
        re.reverse();
        re
    }

    /// Returns the size (ie the number of vertices) of the convex hull of the dataset
    pub fn number_of_vertices_on_convex_hull(&self) -> usize {
        //-- number of finite vertices on the boundary of the convex hull
        if self.is_init == false {
            return 0;
        }
        return self.stars[0].link.len();
    }

    /// Returns `true` if the vertex `vi` is part of the boundary of the convex
    /// hull of the dataset; `false` otherwise.
    pub fn is_vertex_convex_hull(&self, vi: usize) -> bool {
        if vi == 0 {
            return false;
        }
        if self.is_vertex_valid(vi) == false {
            return false;
        }
        self.stars[vi].link.contains_infinite_vertex()
    }

    /// Returns, if it exists, the [`Triangle`] containing `(px, py)`.
    /// If it is direction on a vertex/edge, then one is randomly chosen.
    pub fn locate(&self, px: f64, py: f64) -> Result<Triangle, StartinError> {
        if self.is_init == false {
            return Err(StartinError::EmptyTriangulation);
        }
        let p: [f64; 3] = [px, py, 0.0];
        let re = self.walk(&p);
        match re.is_infinite() {
            true => return Err(StartinError::OutsideConvexHull),
            false => return Ok(re),
        }
    }

    /// Returns closest point (in 2D) to a query point `(x, y)`.
    /// if `(px, py)` is outside the convex hull then [`StartinError::OutsideConvexHull`] is raised.
    pub fn closest_point(&self, px: f64, py: f64) -> Result<usize, StartinError> {
        let re = self.locate(px, py);
        if re.is_err() {
            return Err(re.err().unwrap());
        }
        let p: [f64; 3] = [px, py, 0.0];
        let tr = re.unwrap();
        let mut d = std::f64::MAX;
        let mut closest: usize = 0;
        //-- find closest vertex in the triangle containing p
        for each in tr.v.iter() {
            let dtmp = geom::distance2d_squared(&self.stars[*each].pt, &p);
            if dtmp < d {
                d = dtmp;
                closest = *each;
            }
        }
        loop {
            let mut found_one_closer = false;
            for each in self.stars[closest].link.iter() {
                let dtmp = geom::distance2d_squared(&self.stars[*each].pt, &p);
                if dtmp < d {
                    d = dtmp;
                    closest = *each;
                    found_one_closer = true;
                    break;
                }
            }
            if found_one_closer == false {
                break;
            }
        }
        Ok(closest)
    }

    fn walk(&self, x: &[f64]) -> Triangle {
        //-- find the starting tr
        let mut cur = self.cur;
        //-- jump-and-walk
        if self.jump_and_walk == true {
            let mut rng = thread_rng();
            let mut d: f64 = geom::distance2d_squared(&self.stars[self.cur].pt, &x);
            let n = (self.stars.len() as f64).powf(0.25);
            // let n = (self.stars.len() as f64).powf(0.25) * 7.0;
            for _i in 0..n as i32 {
                let re: usize = rng.gen_range(1, self.stars.len());
                // let dtemp = x.square_2d_distance(&self.stars[re].pt);
                if self.stars[re].is_deleted() == true {
                    continue;
                }
                let dtemp = geom::distance2d_squared(&self.stars[re].pt, &x);
                if dtemp < d {
                    cur = re;
                    d = dtemp;
                }
            }
        }
        let mut tr = Triangle { v: [0, 0, 0] };
        // println!("cur: {}", cur);

        //-- 1. find a finite triangle
        tr.v[0] = cur;
        let l = &self.stars[cur].link;
        for i in 0..(l.len() - 1) {
            if (l[i] != 0) && (l[i + 1] != 0) {
                tr.v[1] = l[i];
                tr.v[2] = l[i + 1];
                break;
            }
        }
        //-- 2. order it such that tr0-tr1-x is CCW
        if geom::orient2d(
            &self.stars[tr.v[0]].pt,
            &self.stars[tr.v[1]].pt,
            &x,
            self.robust_predicates,
        ) == -1
        {
            if geom::orient2d(
                &self.stars[tr.v[1]].pt,
                &self.stars[tr.v[2]].pt,
                &x,
                self.robust_predicates,
            ) != -1
            {
                let tmp: usize = tr.v[0];
                tr.v[0] = tr.v[1];
                tr.v[1] = tr.v[2];
                tr.v[2] = tmp;
            } else {
                let tmp: usize = tr.v[1];
                tr.v[1] = tr.v[0];
                tr.v[0] = tr.v[2];
                tr.v[2] = tmp;
            }
        }
        //-- 3. start the walk
        //-- we know that tr0-tr1-x is CCW
        loop {
            if tr.is_infinite() == true {
                break;
            }
            if geom::orient2d(
                &self.stars[tr.v[1]].pt,
                &self.stars[tr.v[2]].pt,
                &x,
                self.robust_predicates,
            ) != -1
            {
                if geom::orient2d(
                    &self.stars[tr.v[2]].pt,
                    &self.stars[tr.v[0]].pt,
                    &x,
                    self.robust_predicates,
                ) != -1
                {
                    break;
                } else {
                    //-- walk to incident to tr1,tr2
                    // println!("here");
                    let prev = self.stars[tr.v[2]].link.get_prev_vertex(tr.v[0]).unwrap();
                    tr.v[1] = tr.v[2];
                    tr.v[2] = prev;
                }
            } else {
                //-- walk to incident to tr1,tr2
                // a.iter().position(|&x| x == 2), Some(1)
                let prev = self.stars[tr.v[1]].link.get_prev_vertex(tr.v[2]).unwrap();
                tr.v[0] = tr.v[2];
                tr.v[2] = prev;
            }
        }
        return tr;
    }

    fn flip22(&mut self, tr: &Triangle, opposite: usize) -> (Triangle, Triangle) {
        //-- step 1.
        self.stars[tr.v[0]].link.insert_after_v(opposite, tr.v[1]);
        //-- step 2.
        self.stars[tr.v[1]].link.delete(tr.v[2]);
        //-- step 3.
        self.stars[opposite].link.insert_after_v(tr.v[0], tr.v[2]);
        //-- step 4.
        self.stars[tr.v[2]].link.delete(tr.v[1]);
        //-- make 2 triangles to return (to stack)
        let ret0 = Triangle {
            v: [tr.v[0], tr.v[1], opposite],
        };
        let ret1 = Triangle {
            v: [tr.v[0], opposite, tr.v[2]],
        };
        (ret0, ret1)
    }

    fn get_opposite_vertex(&self, tr: &Triangle) -> usize {
        self.stars[tr.v[2]].link.get_next_vertex(tr.v[1]).unwrap()
    }

    /// Returns a [`Vec`]<[`Vec`]<[`f64`]>> of all the vertices
    /// (including the infinite one and the removed ones)
    pub fn all_vertices(&self) -> Vec<Vec<f64>> {
        let mut pts: Vec<Vec<f64>> = Vec::with_capacity(self.stars.len() - 1);
        for i in 0..self.stars.len() {
            pts.push(self.stars[i].pt.to_vec());
        }
        pts
    }

    /// Returns a [`Vec`]<[`usize`]> of all the finite edges (implicitly grouped by 2)
    pub fn all_finite_edges(&self) -> Vec<usize> {
        let mut edges: Vec<usize> = Vec::new();
        for i in 1..self.stars.len() {
            for value in self.stars[i].link.iter() {
                if (*value != 0) && (i < *value) {
                    edges.push(i);
                    edges.push(*value);
                }
            }
        }
        edges
    }

    /// Returns a [`Vec`]<[`Triangle`]> of all the (finite + infinite) triangles
    pub fn all_triangles(&self) -> Vec<Triangle> {
        let mut trs: Vec<Triangle> = Vec::new();
        for (i, star) in self.stars.iter().enumerate() {
            //-- reconstruct triangles
            for (j, value) in star.link.iter().enumerate() {
                if i < *value {
                    // let k = star.l[self.nexti(star.link.len(), j)];
                    let k = star.link[star.link.next_index(j)];
                    if i < k {
                        trs.push(Triangle { v: [i, *value, k] });
                    }
                }
            }
        }
        trs
    }

    /// Returns a [`Vec`]<[`Triangle`]> of all the finite triangles
    pub fn all_finite_triangles(&self) -> Vec<Triangle> {
        let alltrs = self.all_triangles();
        let mut re: Vec<Triangle> = Vec::new();
        for t in &alltrs {
            if t.is_infinite() == false {
                re.push(t.clone());
            }
        }
        re
    }

    /// Validates the Delaunay triangulation:
    /// (1) checks each triangle against each vertex (circumcircle tests); very slow
    /// (2) checks whether the convex hull is really convex
    pub fn is_valid(&self) -> bool {
        self.is_valid_ch_convex() && self.is_valid_circumcircle()
    }

    fn is_valid_circumcircle(&self) -> bool {
        let mut re = true;
        let trs = self.all_finite_triangles();
        for tr in trs.iter() {
            for i in 1..self.stars.len() {
                if self.stars[i].is_deleted() == false
                    && geom::incircle(
                        &self.stars[tr.v[0]].pt,
                        &self.stars[tr.v[1]].pt,
                        &self.stars[tr.v[2]].pt,
                        &self.stars[i].pt,
                        self.robust_predicates,
                    ) > 0
                {
                    println!("NOT DELAUNAY FFS!");
                    println!("{} with {}", tr, i);
                    re = false
                }
            }
        }
        re
    }

    fn is_valid_ch_convex(&self) -> bool {
        let mut re = true;
        let ch = self.convex_hull();
        for i in 0..ch.len() {
            if geom::orient2d(
                &self.stars[ch[i % ch.len()]].pt,
                &self.stars[ch[(i + 1) % ch.len()]].pt,
                &self.stars[ch[(i + 2) % ch.len()]].pt,
                self.robust_predicates,
            ) == -1
            {
                re = false;
                break;
            }
        }
        if re == false {
            println!("CONVEX NOT CONVEX");
        }
        return re;
    }

    fn remove_on_convex_hull(&mut self, v: usize) -> Result<usize, StartinError> {
        // println!("!!! REMOVE ON CONVEX HULL");
        let mut adjs: Vec<usize> = Vec::new();
        //-- necessary because assumptions below for start-end line on CH
        self.stars[v].link.infinite_first();
        for each in self.stars[v].link.iter() {
            adjs.push(*each);
        }
        // println!("adjs: {:?}", adjs);
        let mut cur: usize = 0;
        //-- 1. find and create finite triangles only
        let mut nadjs = adjs.len();
        let mut steps = 0;
        while adjs.len() > 3 {
            //-- control the loops to avoid infinite loop, when all options in a temp
            //-- star have been tried it's because we're stuck (and done actually)
            if steps == nadjs {
                break;
            }
            if adjs.len() == nadjs {
                steps += 1;
            } else {
                nadjs = adjs.len();
                steps = 0;
            }
            //-- define the ear
            let a = cur % adjs.len();
            let b = (cur + 1) % adjs.len();
            let c = (cur + 2) % adjs.len();
            // println!("cur ear--> {:?} {}/{}/{}", adjs, a, b, c);
            if adjs[a] == 0 || adjs[b] == 0 || adjs[c] == 0 {
                //-- do not process infinite ear
                cur += 1;
                continue;
            }
            if (geom::orient2d(
                &self.stars[adjs[a]].pt,
                &self.stars[adjs[b]].pt,
                &self.stars[adjs[c]].pt,
                self.robust_predicates,
            ) == 1)
                && (geom::orient2d(
                    &self.stars[adjs[a]].pt,
                    &self.stars[adjs[c]].pt,
                    &self.stars[v].pt,
                    self.robust_predicates,
                ) >= 0)
            {
                // println!("ear {}-{}-{}", adjs[a], adjs[b], adjs[c]);
                //-- test incircle with all other vertices in the "hole"
                let cur2 = cur + 3;
                let mut isdel = true;
                for i in 0..adjs.len() - 3 {
                    // println!("test ear with {}", adjs[(cur2 + i) % adjs.len()]);
                    if adjs[(cur2 + i) % adjs.len()] != 0
                        && geom::incircle(
                            &self.stars[adjs[a]].pt,
                            &self.stars[adjs[b]].pt,
                            &self.stars[adjs[c]].pt,
                            &self.stars[adjs[(cur2 + i) % adjs.len()]].pt,
                            self.robust_predicates,
                        ) > 0
                    {
                        isdel = false;
                        break;
                    }
                }
                if isdel == true {
                    // println!("flip22");
                    let t = Triangle {
                        v: [adjs[a], adjs[b], v],
                    };
                    self.flip22(&t, adjs[c]);
                    adjs.remove((cur + 1) % adjs.len());
                }
            }
            cur += 1;
        }
        //-- flip31 to remove the vertex
        if adjs.len() == 3 {
            self.flip31(v);
            return Ok(self.stars.len() - 1);
        } else {
            //-- convex part is filled, and we need to apply a special "flip"
            //-- to delete the vertex v and its incident edges
            // println!("FLIP-FOR-CH");
            self.stars[adjs[1]].link.delete(v);
            self.stars[*(adjs.last().unwrap())].link.delete(v);
            for i in 2..(adjs.len() - 1) {
                if self.is_vertex_convex_hull(adjs[i]) == true {
                    //-- going back to a line, no triangles
                    //-- wipe it all and start the insert_init_phase again
                    for i in 0..self.stars.len() {
                        self.stars[i].link.clear();
                    }
                    self.stars[v].pt[0] = f64::NAN;
                    self.stars[v].pt[1] = f64::NAN;
                    self.stars[v].pt[2] = f64::NAN;
                    self.removed_indices.push(v);
                    self.is_init = false;
                    return Ok(self.stars.len() - 1);
                }
                self.stars[adjs[i]].link.replace(v, 0);
                self.stars[adjs[i]].link.infinite_first();
            }
            let mut prev = v;
            for i in 2..(adjs.len() - 1) {
                self.stars[0].link.insert_after_v(adjs[i], prev);
                prev = adjs[i];
            }
            self.stars[adjs[0]].link.delete(v);
            self.stars[v].link.clear();
            self.stars[v].pt[0] = f64::NAN;
            self.stars[v].pt[1] = f64::NAN;
            self.stars[v].pt[2] = f64::NAN;
            self.removed_indices.push(v);

            for i in 0..1000 {
                if adjs[i] != 0 {
                    self.cur = adjs[i];
                    break;
                }
            }
            Ok(self.stars.len() - 1)
        }
    }

    /// Removes the vertex `vi` from the [`Triangulation`] and updates for the "Delaunay-ness".
    ///
    /// The vertex is not removed from memory but flagged as removed, thus all the other vertices
    /// keep their IDs.
    /// The following insertion of a point will reuse this ID.
    /// It is therefore possible to have an array that contains unused/removed vertices.
    pub fn remove(&mut self, vi: usize) -> Result<usize, StartinError> {
        // println!("REMOVE vertex {}", v);
        if vi == 0 {
            return Err(StartinError::VertexInfinite);
        }
        if self.is_init == false {
            self.stars[vi].pt[0] = f64::NAN;
            self.stars[vi].pt[1] = f64::NAN;
            self.stars[vi].pt[2] = f64::NAN;
            self.removed_indices.push(vi);
        }
        match self.is_vertex_removed(vi) {
            Err(why) => return Err(why),
            Ok(b) => {
                if b == true {
                    return Err(StartinError::VertexRemoved);
                }
            }
        }
        if self.is_vertex_convex_hull(vi) {
            return self.remove_on_convex_hull(vi);
        }
        let mut adjs: Vec<usize> = Vec::new();
        for each in self.stars[vi].link.iter() {
            adjs.push(*each);
        }
        // println!("adjs: {:?}", adjs);
        let mut cur: usize = 0;
        while adjs.len() > 3 {
            let a = cur % adjs.len();
            let b = (cur + 1) % adjs.len();
            let c = (cur + 2) % adjs.len();
            // println!("cur ear--> {:?} {}/{}/{}", adjs, a, b, c);
            if (geom::orient2d(
                &self.stars[adjs[a]].pt,
                &self.stars[adjs[b]].pt,
                &self.stars[adjs[c]].pt,
                self.robust_predicates,
            ) == 1)
                && (geom::orient2d(
                    &self.stars[adjs[a]].pt,
                    &self.stars[adjs[c]].pt,
                    &self.stars[vi].pt,
                    self.robust_predicates,
                ) >= 0)
            {
                // println!("ear {}-{}-{}", adjs[a], adjs[b], adjs[c]);
                //-- test incircle with all other vertices in the "hole"
                let cur2 = cur + 3;
                let mut isdel = true;
                for i in 0..adjs.len() - 3 {
                    // println!("test ear with {}", adjs[(cur2 + i) % adjs.len()]);
                    if geom::incircle(
                        &self.stars[adjs[a]].pt,
                        &self.stars[adjs[b]].pt,
                        &self.stars[adjs[c]].pt,
                        &self.stars[adjs[(cur2 + i) % adjs.len()]].pt,
                        self.robust_predicates,
                    ) > 0
                    {
                        isdel = false;
                        break;
                    }
                }
                if isdel == true {
                    // println!("flip22");
                    let t = Triangle {
                        v: [adjs[a], adjs[b], vi],
                    };
                    self.flip22(&t, adjs[c]);
                    adjs.remove((cur + 1) % adjs.len());
                }
            }
            cur = cur + 1;
        }
        //-- flip31 to remove the vertex
        self.flip31(vi);
        Ok(self.stars.len() - 1)
    }

    /// Write an [OBJ file](https://en.wikipedia.org/wiki/Wavefront_.obj_file) to disk.
    pub fn write_obj(&self, path: String) -> std::io::Result<()> {
        let trs = self.all_finite_triangles();
        let mut f = File::create(path)?;
        let mut s = String::new();
        //-- find one good vertice to replace the deleted one
        let mut onegoodpt = vec![1.0, 1.0, 1.0];
        for i in 1..self.stars.len() {
            if self.stars[i].is_deleted() == false {
                onegoodpt[0] = self.stars[i].pt[0];
                onegoodpt[1] = self.stars[i].pt[1];
                onegoodpt[2] = self.stars[i].pt[2];
                break;
            }
        }
        for i in 1..self.stars.len() {
            if self.stars[i].is_deleted() == true {
                s.push_str(&format!(
                    "v {} {} {}\n",
                    onegoodpt[0], onegoodpt[1], onegoodpt[2]
                ));
                continue;
            }
            s.push_str(&format!(
                "v {} {} {}\n",
                self.stars[i].pt[0], self.stars[i].pt[1], self.stars[i].pt[2]
            ));
        }
        write!(f, "{}", s).unwrap();
        let mut s = String::new();
        for tr in trs.iter() {
            s.push_str(&format!("f {} {} {}\n", tr.v[0], tr.v[1], tr.v[2]));
        }
        write!(f, "{}", s).unwrap();
        // println!("write fobj: {:.2?}", starttime.elapsed());
        Ok(())
    }

    /// Write a [PLY file](https://en.wikipedia.org/wiki/PLY_(file_format)) to disk.
    pub fn write_ply(&self, path: String) -> std::io::Result<()> {
        let trs = self.all_finite_triangles();
        let mut f = File::create(path)?;
        //-- header
        write!(f, "ply\n").unwrap();
        write!(f, "format ascii 1.0\n").unwrap();
        write!(f, "comment made by startin\n").unwrap();
        write!(f, "element vertex {}\n", self.stars.len() - 1).unwrap();
        write!(f, "property float x\n").unwrap();
        write!(f, "property float y\n").unwrap();
        write!(f, "property float z\n").unwrap();
        write!(f, "element face {}\n", trs.len()).unwrap();
        write!(f, "property list uchar int vertex_indices\n").unwrap();
        write!(f, "end_header\n").unwrap();
        //-- find one good vertice to replace the deleted one
        let mut onegoodpt = vec![1.0, 1.0, 1.0];
        for i in 1..self.stars.len() {
            if self.stars[i].is_deleted() == false {
                onegoodpt[0] = self.stars[i].pt[0];
                onegoodpt[1] = self.stars[i].pt[1];
                onegoodpt[2] = self.stars[i].pt[2];
                break;
            }
        }
        let mut s = String::new();
        for i in 1..self.stars.len() {
            if self.stars[i].is_deleted() == true {
                s.push_str(&format!(
                    "{} {} {}\n",
                    onegoodpt[0], onegoodpt[1], onegoodpt[2]
                ));
                continue;
            }
            s.push_str(&format!(
                "{} {} {}\n",
                self.stars[i].pt[0], self.stars[i].pt[1], self.stars[i].pt[2]
            ));
        }
        write!(f, "{}", s).unwrap();
        let mut s = String::new();
        for tr in trs.iter() {
            s.push_str(&format!(
                "3 {} {} {}\n",
                tr.v[0] - 1,
                tr.v[1] - 1,
                tr.v[2] - 1
            ));
        }
        write!(f, "{}", s).unwrap();
        Ok(())
    }

    /// Returns a [`String`] containing different statistics about the triangulation.
    pub fn printme(&self, withxyz: bool) -> String {
        let mut s = String::from("**********\n");
        // s.push_str(&format!("#pts: {}\n", self.number_pts()));
        for (i, p) in self.stars.iter().enumerate() {
            // s.push_str(&format!("{}: {}\n", i, self.stars[i].link));
            s.push_str(&format!("{}: [", i));
            for each in p.link.iter() {
                s.push_str(&format!("{} - ", each));
            }
            s.push_str(&format!("]\n"));
            if withxyz == true {
                s.push_str(&format!("\t{:?}\n", self.stars[i].pt));
            }
        }
        s.push_str("**********\n");
        s
    }

    /// Returns the area of the Voronoi cell of `vi`.
    ///
    /// # Arguments
    ///
    /// * `vi` - the index of the vertex
    /// * `ignore_infinity` - calculate the area even is `vi` is on the convex hull.
    ///    This is used by [`interpolation::NNI`] when neighbours have no area, this bounds
    ///    arbitrarily the area and because we take the different the interpolated value
    ///    is the same at the end.
    pub fn voronoi_cell_area(&self, vi: usize, ignore_infinity: bool) -> Option<f64> {
        if self.is_vertex_valid(vi) == false {
            return None;
        }
        if (ignore_infinity == false) && (self.is_vertex_convex_hull(vi) == true) {
            return Some(f64::INFINITY);
        }
        //-- process non-CH points that exists
        let mut centres: Vec<Vec<f64>> = Vec::new();
        let mut l = self.stars[vi].link.clone();
        if l.contains_infinite_vertex() {
            l.delete(0);
        }
        for (i, n) in l.iter().enumerate() {
            let j = l.next_index(i);
            centres.push(geom::circle_centre(
                &self.stars[vi].pt,
                &self.stars[*n].pt,
                &self.stars[l[j]].pt,
            ));
        }
        //-- copy first to make circular
        centres.push(vec![centres[0][0], centres[0][1]]);
        let mut totalarea = 0.0_f64;
        for c in centres.windows(2) {
            totalarea += geom::area_triangle(&self.stars[vi].pt, &c[0], &c[1]);
        }
        Some(totalarea)
    }

    fn is_vertex_valid(&self, v: usize) -> bool {
        let mut re = true;
        if v >= self.stars.len() || self.stars[v].is_deleted() == true {
            re = false;
        }
        re
    }

    /// Returns the (axis-aligned) bounding box of the triangulation.
    pub fn get_bbox(&self) -> Vec<f64> {
        let mut minx: f64 = std::f64::MAX;
        let mut miny: f64 = std::f64::MAX;
        let mut maxx: f64 = std::f64::MIN;
        let mut maxy: f64 = std::f64::MIN;
        for i in 1..self.stars.len() {
            if self.is_vertex_removed(i).unwrap() == true {
                continue;
            }
            if self.stars[i].pt[0] < minx {
                minx = self.stars[i].pt[0];
            }
            if self.stars[i].pt[1] < miny {
                miny = self.stars[i].pt[1];
            }
            if self.stars[i].pt[0] > maxx {
                maxx = self.stars[i].pt[0];
            }
            if self.stars[i].pt[1] > maxy {
                maxy = self.stars[i].pt[1];
            }
        }
        vec![minx, miny, maxx, maxy]
    }

    /// Exaggerates vertically the z-values, used for visualisation mostly.
    ///
    /// The value can be <1.0 to have negative exaggeration.
    pub fn vertical_exaggeration(&mut self, factor: f64) {
        let mut minz: f64 = std::f64::MAX;
        for i in 1..self.stars.len() {
            if self.stars[i].is_deleted() == true {
                continue;
            }
            if self.stars[i].pt[2] < minz {
                minz = self.stars[i].pt[2];
            }
        }
        for i in 1..self.stars.len() {
            if self.stars[i].is_deleted() == true {
                continue;
            }
            let z2 = ((self.stars[i].pt[2] - minz) * factor) + minz;
            self.stars[i].pt[2] = z2;
        }
    }

    pub fn has_garbage(&self) -> bool {
        if self.number_of_removed_vertices() > 0 {
            true
        } else {
            false
        }
    }

    /// Collect garbage, that is remove from memory the vertices
    /// marked as removed.
    ///
    /// Watch out: the vertices get new IDs (and thus the triangles) too. And this can
    /// be a slow operation.
    pub fn collect_garbage(&mut self) {
        self.removed_indices.sort_unstable();
        for star in self.stars.iter_mut() {
            for value in star.link.0.iter_mut() {
                let pos = self.removed_indices.binary_search(value).unwrap_err();
                let newv = *value - pos;
                *value = newv;
            }
        }
        let mut offset = 0;
        for each in &self.removed_indices {
            self.stars.remove(each - offset);
            offset += 1;
        }
        self.removed_indices.clear();
    }
}

impl fmt::Display for Triangulation {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.write_str("======== TRIANGULATION ========\n")?;
        fmt.write_str(&format!("# vertices: {:19}\n", self.number_of_vertices()))?;
        fmt.write_str(&format!("# triangles: {:18}\n", self.number_of_triangles()))?;
        fmt.write_str(&format!(
            "# convex hull: {:16}\n",
            self.number_of_vertices_on_convex_hull()
        ))?;
        fmt.write_str(&format!("---\n"))?;
        fmt.write_str(&format!("robust: {}\n", self.robust_predicates))?;
        fmt.write_str(&format!("tolerance: {}\n", self.snaptol))?;
        fmt.write_str("===============================\n")?;
        Ok(())
    }
}