1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
//! Macros
//!
//! Note that macros have been designed so that there is some
//! punctuation and structure to the arguments, not merely a flat list
//! of anonymous values.  That makes it easier to remember what each
//! part is.  They have also been designed so that `rustfmt` will
//! accept the code within the macro and format it.  So the code must
//! parse as valid Rust, even though the interpretation is different.
//!
//! Arguments are evaluated early where possible.  This means that
//! many borrowing problems common in Rust can be avoided, for example
//! where argument expressions reference something already borrowed
//! earlier in the arg-list, especially `Cx` references.  So the code
//! can look more natural.
//!
//! Also, argument types are checked early where possible, to give
//! easier to understand error messages.

/// Shorthand for context argument type
///
/// Usually (for Rust 2018 edition) the context argument must be
/// written `cx: &mut Cx<'_, Self>`.  Using this macro it can instead
/// be written `cx: CX![]`.  This reduces the boilerplate, but keeps
/// everything else as plain Rust.  (The alternative would be to try
/// to wrap the whole method in a macro or use procedural macros.)
///
/// Note that sometimes you'll need a context with a different type
/// than `Self`, in which case `cx: CX![OtherType]` may be used,
/// equivalent to `cx: &mut Cx<'_, OtherType>`.
#[macro_export]
macro_rules! CX {
    () => { &mut $crate::Cx<'_, Self> };
    ($other:ty) => { &mut $crate::Cx<'_, $other> };
}

// Generate lists of indices from lists of `tt` AST objects.  This is
// used to convert arguments lists into indices so that a tuple can be
// generated and then indexed using `tup.3`-style syntax.
//
// Lists of `tt` items must be enclosed in `[]` and put at the start
// of the arg-list.  Each list is then converted to a list of indices
// contained in `[]` and placed at the end of the arg-list.  More than
// one `[]` list may be included and will be processed.  Finally the
// first identifier is taken to be the name of a macro and is invoked
// with the processed arg-list.
#[doc(hidden)]
#[macro_export]
macro_rules! indices {
    ( $cb:ident $( $args:tt )* ) =>
    { $crate::$cb!( $($args)* ) };
    ( [ ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* []) };
    ( [ $a:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 ]) };
    ( [ $a:tt $b:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 ]) };
    ( [ $a:tt $b:tt $c:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 ]) };
    ( [ $a:tt $b:tt $c:tt $d:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 ]) };
    ( [ $a:tt $b:tt $c:tt $d:tt $e:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 ]) };
    ( [ $a:tt $b:tt $c:tt $d:tt $e:tt $f:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 5 ]) };
    ( [ $a:tt $b:tt $c:tt $d:tt $e:tt $f:tt $g:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 5 6 ]) };
    ( [ $a:tt $b:tt $c:tt $d:tt $e:tt $f:tt $g:tt $h:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 5 6 7 ]) };
    ( [ $a:tt $b:tt $c:tt $d:tt $e:tt $f:tt $g:tt $h:tt $i:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 5 6 7 8 ]) };
    ( [ $a:tt $b:tt $c:tt $d:tt $e:tt $f:tt $g:tt $h:tt $i:tt $j:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 5 6 7 8 9 ]) };
    ( [ $a:tt $b:tt $c:tt $d:tt $e:tt $f:tt $g:tt $h:tt $i:tt $j:tt $k:tt  ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 5 6 7 8 9 10 ]) };
    ( [ $a:tt $b:tt $c:tt $d:tt $e:tt $f:tt $g:tt $h:tt $i:tt $j:tt $k:tt $l:tt  ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 5 6 7 8 9 10 11 ]) };
    ( [ $a:tt $b:tt $c:tt $d:tt $e:tt $f:tt $g:tt $h:tt $i:tt $j:tt $k:tt $l:tt $m:tt  ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 5 6 7 8 9 10 11 12 ]) };
    ( [ $a:tt $b:tt $c:tt $d:tt $e:tt $f:tt $g:tt $h:tt $i:tt $j:tt $k:tt $l:tt $m:tt $n:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ]) };
    ( [ $a:tt $b:tt $c:tt $d:tt $e:tt $f:tt $g:tt $h:tt $i:tt $j:tt $k:tt $l:tt $m:tt $n:tt $o:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ]) };
    ( [ $a:tt $b:tt $c:tt $d:tt $e:tt $f:tt $g:tt $h:tt $i:tt $j:tt $k:tt $l:tt $m:tt $n:tt $o:tt $p:tt ] $($rest:tt)* ) =>
    { $crate::indices!($($rest)* [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ]) };
    ( $($rest:tt)* ) =>
    { std::compile_error!("Too many arguments in call"); }
}

// Used to insert empty function calls in test mode which let us test
// coverage of the macro branches
#[cfg(test)]
#[doc(hidden)]
#[macro_export]
macro_rules! COVERAGE {
    ($name:ident) => {
        $crate::test::macro_coverage::$name();
    };
}
#[cfg(not(test))]
#[doc(hidden)]
#[macro_export]
macro_rules! COVERAGE {
    ($name:ident) => {};
}

/// Create a new actor and initialise it
///
/// ```ignore
/// let actor = actor!(core, Type::init(args...), notify);
/// let actor = actor!(core, <path::Type>::init(args...), notify);
/// ```
///
/// This may be used when creation and initialisation of the actor can
/// be done together.  Otherwise see [`actor_new!`].  The actor is
/// created and then the given initialisation function is called
/// asynchronously.  The `notify` argument is a `Ret<StopCause>`
/// instance to call if the actor is terminated.  An [`ActorOwn`]
/// reference is returned.
///
/// If the **logger** feature is enabled then an **Open** log-record
/// is written for the new actor.  If the `core` argument is actually
/// a [`Cx`] then the actor-ID of the actor that the [`Cx`] belongs to
/// will be recorded as the parent actor.
///
/// Implemented using [`ActorOwn::new`].
///
/// [`ActorOwn::new`]: struct.ActorOwn.html#method.new
/// [`ActorOwn`]: struct.ActorOwn.html
/// [`Cx`]: struct.Cx.html
/// [`actor_new!`]: macro.actor_new.html
#[macro_export]
macro_rules! actor {
    ($core:expr, $type:ident :: $init:ident($($x:expr),* $(,)? ), $notify:expr) => {{
        $crate::COVERAGE!(actor_0);
        let notify = $notify;
        let parid = $core.access_log_id();
        let core = $core.access_core();
        let actor = $crate::ActorOwn::<$type>::new(core, notify, parid);
        $crate::call!([actor], <$type>::$init($($x),*));
        actor
    }};
    ($core:expr, <$type:ty> :: $init:ident($($x:expr),* $(,)? ), $notify:expr) => {{
        $crate::COVERAGE!(actor_1);
        let notify = $notify;
        let parid = $core.access_log_id();
        let core = $core.access_core();
        let actor = $crate::ActorOwn::<$type>::new(core, notify, parid);
        $crate::call!([actor], <$type>::$init($($x),*));
        actor
    }};
}

/// Create a new actor
///
/// This may be used when creation and initialisation of the actor
/// must be done separately, for example when two actors need to be
/// initialised with [`Fwd`] instances pointing to each other.
/// Otherwise see [`actor!`].
///
/// ```ignore
/// let actor = actor_new!(core, Type, notify);
/// call!([actor], Type::init(arg1, arg2...));
/// ```
///
/// If the **logger** feature is enabled then an **Open** log-record
/// is written for the new actor.  If the `core` argument is actually
/// a [`Cx`] then the actor-ID of the actor that the [`Cx`] belongs to
/// will be recorded as the parent actor.
///
/// An [`ActorOwn`] reference is returned.  Implemented using
/// [`ActorOwn::new`].
///
/// [`ActorOwn::new`]: struct.ActorOwn.html#method.new
/// [`ActorOwn`]: struct.ActorOwn.html
/// [`Cx`]: struct.Cx.html
/// [`Fwd`]: struct.Fwd.html
/// [`actor!`]: macro.actor.html
#[macro_export]
macro_rules! actor_new {
    ($core:expr, $type:ty, $notify:expr) => {{
        $crate::COVERAGE!(actor_new);
        let notify = $notify;
        let parid = $core.access_log_id();
        let core = $core.access_core();
        $crate::ActorOwn::<$type>::new(core, notify, parid) // Expecting Cx, Core or Stakker ref
    }};
}

/// Create a new actor that implements a trait and initialise it
///
/// ```ignore
/// let actor = actor_of_trait!(core, BoxedTrait, Type::init(args...), notify);
/// let actor = actor_of_trait!(core, BoxedTrait, <path::Type>::init(args...), notify);
/// ```
///
/// This allows treating a set of actors that all implement a trait
/// equally in the calling code.  The actors have to be defined
/// slightly differently to make this work.  Here's a short example:
///
/// ```
/// # use stakker::*;
/// # use std::time::Instant;
/// // Trait definition
/// type Animal = Box<dyn AnimalTrait>;
/// trait AnimalTrait {
///     fn sound(&mut self, cx: CX![Animal]);
/// }
///
/// struct Cat;
/// impl Cat {
///     fn init(_: CX![Animal]) -> Option<Animal> {
///         Some(Box::new(Self))
///     }
/// }
/// impl AnimalTrait for Cat {
///     fn sound(&mut self, _: CX![Animal]) {
///         println!("Miaow");
///     }
/// }
///
/// struct Dog;
/// impl Dog {
///     fn init(_: CX![Animal]) -> Option<Animal> {
///         Some(Box::new(Self))
///     }
/// }
/// impl AnimalTrait for Dog {
///     fn sound(&mut self, _: CX![Animal]) {
///         println!("Woof");
///     }
/// }
///
/// let mut stakker = Stakker::new(Instant::now());
/// let s = &mut stakker;
///
/// // This variable can hold any kind of animal
/// let mut animal: ActorOwn<Animal>;
/// animal = actor_of_trait!(s, Animal, Cat::init(), ret_nop!());
/// call!([animal], sound());
/// animal = actor_of_trait!(s, Animal, Dog::init(), ret_nop!());
/// call!([animal], sound());
///
/// // To separate creation and initialisation, do it this way:
/// animal = actor_new!(s, Animal, ret_nop!());
/// call!([animal], Cat::init());
/// call!([animal], sound());
///
/// s.run(Instant::now(), false);
/// ```
///
/// See also [`ActorOwnAnon`] for an alterative approach to the same
/// problem.
///
/// Implemented using [`ActorOwn::new`].
///
/// [`ActorOwn::new`]: struct.ActorOwn.html#method.new
/// [`ActorOwnAnon`]: struct.ActorOwnAnon.html
#[macro_export]
macro_rules! actor_of_trait {
    ($core:expr, $trait:ident, $type:ident :: $init:ident($($x:expr),* $(,)? ), $notify:expr) => {{
        $crate::COVERAGE!(actor_2);
        let notify = $notify;
        let parid = $core.access_log_id();
        let core = $core.access_core();
        let actor = $crate::ActorOwn::<$trait>::new(core, notify, parid);
        $crate::call!([actor], <$type>::$init($($x),*));
        actor
    }};
    ($core:expr, $trait:ident, <$type:ty> :: $init:ident($($x:expr),* $(,)? ), $notify:expr) => {{
        $crate::COVERAGE!(actor_3);
        let notify = $notify;
        let parid = $core.access_log_id();
        let core = $core.access_core();
        let actor = $crate::ActorOwn::<$trait>::new(core, notify, parid);
        $crate::call!([actor], <$type>::$init($($x),*));
        actor
    }};
}

/// Create a new actor in an [`ActorOwnSlab`]
///
/// The new actor is created and its [`ActorOwn`] reference is stored
/// in the provided [`ActorOwnSlab`].  The termination notification
/// handler is set up to remove the reference from the slab when the
/// actor terminates.  So this takes care of all the child actor
/// housekeeping for simple cases.  See [`ActorOwnSlab`] for notes on
/// more complicated cases.
///
/// So assuming `self.children` is your [`ActorOwnSlab`] instance, the
/// call will take one of these forms:
///
/// ```ignore
/// let actor = actor_in_slab!(self.children, cx, Type::init(args...));
/// let actor = actor_in_slab!(self.children, cx, <path::Type>::init(args...));
/// ```
///
/// If you need to monitor failures, then add a `Ret<StopCause>`
/// instance to the end of the macro arguments.  For example:
///
/// ```ignore
/// let actor = actor_in_slab!(
///     self.children, cx, <path::Type>::init(args...),
///     ret_some_to!([cx], |this, cx, cause: StopCause| {
///         ...error handling...
///     }));
/// ```
///
/// Implemented using [`ActorOwnSlab::add`].
///
/// [`ActorOwnSlab::add`]: struct.ActorOwnSlab.html#method.add
/// [`ActorOwnSlab`]: struct.ActorOwnSlab.html
/// [`ActorOwn`]: struct.ActorOwn.html
#[macro_export]
macro_rules! actor_in_slab {
    ($self:ident.$children:ident, $cx:expr, $type:ident :: $init:ident($($x:expr),* $(,)? )) => {{
        $crate::COVERAGE!(actor_in_slab_0);
        $crate::actor_in_slab!($self.$children, $cx, <$type>::$init($($x),*), $crate::Ret::new(|_| {}))
    }};
    ($self:ident.$children:ident, $cx:expr, <$type:ty> :: $init:ident($($x:expr),* $(,)? )) => {{
        $crate::COVERAGE!(actor_in_slab_1);
        $crate::actor_in_slab!($self.$children, $cx, <$type>::$init($($x),*), $crate::Ret::new(|_| {}))
    }};
    ($self:ident.$children:ident, $cx:expr, $type:ident :: $init:ident($($x:expr),* $(,)? ), $notify:expr) => {{
        $crate::COVERAGE!(actor_in_slab_2);
        $crate::actor_in_slab!($self.$children, $cx, <$type>::$init($($x),*), $notify)
    }};
    ($self:ident.$children:ident, $cx:expr, <$type:ty> :: $init:ident($($x:expr),* $(,)? ), $notify:expr) => {{
        $crate::COVERAGE!(actor_in_slab_3);
        let notify = $notify;
        let parent = $cx.this().clone();
        let core = $cx.access_core();
        let actor = $self.$children.add(core, parent, |this| &mut this.$children, notify);
        $crate::call!([actor], <$type>::$init($($x),*));
        actor
    }};
}

/// Synchronously query an actor for information
///
/// This requires a `&mut Stakker` and is intended for interfacing the
/// actor system to external code.  It makes a synchronous call to an
/// actor method, and the actor method may return data from its own
/// state.  However if the actor is not yet in the *Ready* state, or
/// has terminated, then `None` will be returned.  No attempt is made
/// to handle the call asynchronously, e.g. to queue it.  So this is
/// only intended to aid in interfacing the actor system to non-actor
/// code.
///
/// ```ignore
/// // Where `s` is a `&mut Stakker`
/// match query!([actor, s], method(args...)) {
///     None => ...,          // Actor not in ready state
///     Some(result) => ...,  // Successful call
/// }
/// ```
///
/// Implemented using [`Actor::query`].
///
/// [`Actor::query`]: struct.Actor.html#method.query
#[macro_export]
macro_rules! query {
    ([$actor:expr, $stakker:expr], $method:ident( $($x:expr),* $(,)? )) => {{
        $crate::COVERAGE!(query_0);
        $actor.query($stakker, |this, cx| this.$method(cx, $($x),*))
    }}
}

// Common code for `call!` etc
#[doc(hidden)]
#[macro_export]
macro_rules! generic_call {
    // Closures
    ($handler:ident $hargs:tt $access:ident;
     [$cx:expr], |$this:pat_param, $cxid:pat_param| $body:expr) => {{
         $crate::COVERAGE!(generic_call_0);
         let cb = move |$this: &mut Self, $cxid: &mut $crate::Cx<'_, Self>| $body;
         let cx: &mut $crate::Cx<'_, Self> = $cx;  // Expecting Cx<Self> ref
         let this = cx.this().clone();
         let core = $cx.access_core();
         $crate::$handler!($hargs core; move |s| this.apply(s, cb));
     }};
    ($handler:ident $hargs:tt $access:ident;
     [$core:expr], |$stakker:pat_param| $body:expr) => {{
         $crate::COVERAGE!(generic_call_1);
         let core = $core.$access();  // Expecting Core, Cx or Stakker ref
         let cb = move |$stakker : &mut $crate::Stakker| $body;
         $crate::$handler!($hargs core; cb);
     }};
    ($handler:ident $hargs:tt $access:ident;
     [$cx:expr], move | $($x:tt)*) => {{
         std::compile_error!("Do not add `move` to closures as they get an implicit `move` anyway");
     }};
    // All remaining [actor] turned to [actor, actor]
    ($handler:ident $hargs:tt $access:ident;
     [$actor_or_cx:expr], $($x:tt)+) => {{
         // Can't do `let` for actor_or_cx here because that would move it and drop it
         $crate::generic_call!($handler $hargs $access; [$actor_or_cx, $actor_or_cx], $($x)+)
     }};
    ($handler:ident $hargs:tt $access:ident;
     [$actor:expr, $core:expr], $method:ident ( $($x:expr),* $(,)? )) => {{
         $crate::COVERAGE!(generic_call_2);
         let actor = $actor.access_actor().clone();  // Expecting Actor or Cx ref
         let _args = ( $($x,)* );  // This must be before access borrow
         let access = $core.$access();
         $crate::indices!([$(($x))*] generic_call_ready $handler $hargs access; actor _args $method)
     }};
    ($handler:ident $hargs:tt $access:ident;
     [$actor:expr, $core:expr], $type:ident :: $method:ident ( $($x:expr),* $(,)? )) => {{
         $crate::COVERAGE!(generic_call_3);
         let actor = $actor.access_actor().clone();  // Expecting Actor or Cx ref
         let _args = ( $($x,)* );  // This must be before access borrow
         let access = $core.$access();
         $crate::indices!([$(($x))*] generic_call_prep $handler $hargs access; actor _args <$type> $method)
     }};
    ($handler:ident $hargs:tt $access:ident;
     [$actor:expr, $core:expr], < $type:ty > :: $method:ident ( $($x:expr),* $(,)? )) => {{
         $crate::COVERAGE!(generic_call_4);
         let actor = $actor.access_actor().clone();  // Expecting Actor or Cx ref
         let _args = ( $($x,)* );  // This must be before access borrow
         let access = $core.$access();
         $crate::indices!([$(($x))*] generic_call_prep $handler $hargs access; actor _args <$type> $method)
     }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! generic_call_ready {
    ($handler:ident $hargs:tt $core:ident; $actor:ident $args:ident $method:ident [$($xi:tt)*]) => {
        $crate::$handler!($hargs $core; move |s| $actor.apply(s, move |o, c| o.$method(c $(, $args.$xi)*)))
    }
}
#[doc(hidden)]
#[macro_export]
macro_rules! generic_call_prep {
    ($handler:ident $hargs:tt $core:ident; $actor:ident $args:ident <$atyp:ty> $method:ident [$($xi:tt)*]) => {
        $crate::$handler!($hargs $core; move |s| $actor.apply_prep(s, move |c| <$atyp>::$method(c $(, $args.$xi)*)))
    }
}

/// Queue an actor call or inline code for execution soon
///
/// The call is deferred to the main defer queue, which will execute
/// as soon as possible.  The order of execution of calls on an actor
/// is guaranteed to be the same order that the calls were made.
///
/// Note that in the examples below, in general there can be any
/// number of arguments, including zero.  The number of arguments
/// depends on the signature of the called method.  All of these
/// values may be full Rust expressions, which are evaluated at the
/// call-site before queuing the call.
///
/// Note that the part in square brackets gives the context of the
/// call, which takes one of these forms:
///
/// - `[cx]`: This is used for calls to the same actor
///
/// - `[actor]`: This is used for calls to another actor.  The call is
/// made through the actor's built-in [`Deferrer`].
///
/// - `[actor, cx]` or `[actor, core]`: This may also be used instead
/// of `[actor]`.  The call is made via [`Core`], which might be
/// slightly faster if the [`Deferrer`] instances are being inlined,
/// but otherwise gives no advantage compared to the plain `[actor]`
/// form.
///
/// ```ignore
/// // Call a method in this actor or in another actor
/// call!([cx], method(arg1, arg2...));
/// call!([actorxx], method(arg1, arg2...));
///
/// // Call a method whilst the actor is in the 'Prep' state, before it
/// // has a `Self` instance.  `Type` here in the first line may be `Self`.
/// call!([cx], Type::method(arg1, arg2...));
/// call!([cx], <path::Type>::method(arg1, arg2...));
/// call!([actoryy], Type::method(arg1, arg2...));
/// call!([actorzz], <path::Type>::method(arg1, arg2...));
///
/// // Defer a call to inline code.  Closure is always treated as a `move` closure
/// call!([cx], |this, cx| ...code...);   // Inline code which refers to this actor
/// call!([core], |stakker| ...code...);  // Generic inline code (`&mut Stakker` arg)
///
/// // Optionally specifying a `core` or `cx` reference
/// call!([actorxx, core], method(arg1, arg2...));
/// call!([actoryy, core], Type::method(arg1, arg2...));
/// call!([actorzz, core], <path::Type>::method(arg1, arg2...));
/// ```
///
/// Implemented using [`Core::defer`], [`Actor::defer`],
/// [`Actor::apply`] and [`Actor::apply_prep`].
///
/// ## Synchronous direct calls to the same actor
///
/// When calling a method on the same actor, there is another option,
/// and that's to make the call directly on `self`.  Since the actor
/// behaviours are normal Rust methods and the actor state is just a
/// normal Rust structure, there is nothing to stop you doing this.
/// The call occurs synchronously instead of being deferred until
/// later as with [`call!`].  For example:
///
/// ```ignore
/// self.method(cx, arg1, arg2...);
/// ```
///
/// It is also permissible to directly call **Ready** methods from
/// **Prep** methods, since there is no difference between the [`Cx`]
/// passed to a **Prep** method and that passed to a **Ready** method.
/// You won't have `self` in a **Prep** method, but you can make the
/// call on whatever you've called the `Self` value you've
/// constructed.  For example:
///
/// ```ignore
/// let mut this = Self {...};
/// this.method(cx, arg1, arg2...);
/// ```
///
/// [`Actor::apply_prep`]: struct.Actor.html#method.apply_prep
/// [`Actor::apply`]: struct.Actor.html#method.apply
/// [`Actor::defer`]: struct.Actor.html#method.defer
/// [`Core::defer`]: struct.Core.html#method.defer
/// [`Core`]: struct.Core.html
/// [`Cx`]: struct.Cx.html
/// [`Deferrer`]: struct.Deferrer.html
/// [`call!`]: macro.call.html
#[macro_export]
macro_rules! call {
    ( $($x:tt)+ ) => {{
        $crate::COVERAGE!(call_0);
        $crate::generic_call!(call_aux () access_deferrer; $($x)+);
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! call_aux {
    (() $defer:ident; $cb:expr) => {{
        $crate::COVERAGE!(call_1);
        $defer.defer($cb);
    }};
}

/// Lazily perform an actor call or inline code
///
/// This queues calls to the lazy queue which is run only after the
/// normal defer queue has been completely exhausted.  This can be
/// used to run something at the end of this batch of processing, for
/// example to flush buffers after accumulating data.
///
/// Note that in the examples below, in general there can be any
/// number of arguments, including zero.  The number of arguments
/// depends on the signature of the called method.  All of these
/// values may be full Rust expressions, which are evaluated at the
/// call-site before queuing the call.
///
/// Note that the part in square brackets gives the context of the
/// call, which takes one of these forms:
///
/// - `[cx]`: This is used for calls to the same actor
///
/// - `[actor, cx]` or `[actor, core]`: This is used for calls to
/// another actor.  The second argument is used to get access to
/// [`Core`] which is used to submit the call to the correct queue.
///
/// ```ignore
/// // Call a method in this actor or in another actor
/// lazy!([cx], method(arg1, arg2...));
/// lazy!([actorxx, core], method(arg1, arg2...));
///
/// // Call a method whilst the actor is in the 'Prep' state, before it
/// // has a `Self` instance.  `Type` here in the first line may be `Self`.
/// lazy!([cx], Type::method(arg1, arg2...));
/// lazy!([cx], <path::Type>::method(arg1, arg2...));
/// lazy!([actoryy, core], Type::method(arg1, arg2...));
/// lazy!([actorzz, core], <path::Type>::method(arg1, arg2...));
///
/// // Defer a call to inline code.  Closure is always treated as a `move` closure
/// lazy!([cx], |this, cx| ...code...);   // Inline code which refers to this actor
/// lazy!([core], |stakker| ...code...);  // Generic inline code (`&mut Stakker` arg)
/// ```
///
/// Implemented using [`Core::lazy`], [`Actor::apply`] and
/// [`Actor::apply_prep`].
///
/// [`Actor::apply_prep`]: struct.Actor.html#method.apply_prep
/// [`Actor::apply`]: struct.Actor.html#method.apply
/// [`Core::lazy`]: struct.Core.html#method.lazy
/// [`Core`]: struct.Core.html
#[macro_export]
macro_rules! lazy {
    ( $($x:tt)+ ) => {{
        $crate::COVERAGE!(lazy_0);
        $crate::generic_call!(lazy_aux () access_core; $($x)+); // Error? Try [actor, core] form
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! lazy_aux {
    (() $core:ident; $cb:expr) => {{
        $crate::COVERAGE!(lazy_1);
        $core.lazy($cb);
    }};
}

/// Perform an actor call or inline code when the thread becomes idle
///
/// This queues calls to the idle queue which is run only when there
/// is nothing left to run in the normal and lazy queues, and there is
/// no I/O pending.  This can be used to create backpressure in the
/// case of processing overload, i.e. fetch more data only when all
/// current data has been fully processed.  The call syntax accepted
/// is identical to the [`lazy!`] macro.
///
/// Implemented using [`Core::idle`], [`Actor::apply`] and
/// [`Actor::apply_prep`].
///
/// [`Actor::apply_prep`]: struct.Actor.html#method.apply_prep
/// [`Actor::apply`]: struct.Actor.html#method.apply
/// [`Core::idle`]: struct.Core.html#method.idle
/// [`lazy!`]: macro.lazy.html
#[macro_export]
macro_rules! idle {
    ( $($x:tt)+ ) => {{
        $crate::COVERAGE!(idle_0);
        $crate::generic_call!(idle_aux () access_core; $($x)+); // Error? Try [actor, core] form
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! idle_aux {
    (() $core:ident; $cb:expr) => {{
        $crate::COVERAGE!(idle_1);
        $core.idle($cb);
    }};
}

/// After a delay, perform an actor call or inline code
///
/// The syntax of the calls is identical to [`lazy!`], but with a
/// `Duration` argument first.  Returns a [`FixedTimerKey`] which can
/// be used to delete the timer if necessary using
/// [`Core::timer_del`].  See also [`at!`].
///
/// ```ignore
/// after!(dur, ...args-as-for-lazy-macro...);
/// ```
///
/// Implemented using [`Core::after`], [`Actor::apply`] and
/// [`Actor::apply_prep`].
///
/// [`Actor::apply_prep`]: struct.Actor.html#method.apply_prep
/// [`Actor::apply`]: struct.Actor.html#method.apply
/// [`Core::after`]: struct.Core.html#method.after
/// [`Core::timer_del`]: struct.Core.html#method.timer_del
/// [`FixedTimerKey`]: struct.FixedTimerKey.html
/// [`at!`]: macro.at.html
/// [`lazy!`]: macro.lazy.html
#[macro_export]
macro_rules! after {
    ( $dur:expr, $($x:tt)+ ) => {{
        $crate::COVERAGE!(after_0);
        let dur: Duration = $dur;
        $crate::generic_call!(after_aux (dur) access_core; $($x)+) // Error? Try [actor, core] form
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! after_aux {
    (($dur:ident) $core:ident; $cb:expr) => {{
        $crate::COVERAGE!(after_1);
        $core.after($dur, $cb);
    }};
}

/// At the given `Instant`, perform an actor call or inline code
///
/// The syntax of the calls is identical to [`lazy!`], but with an
/// `Instant` argument first.  Returns a [`FixedTimerKey`] which can
/// be used to delete the timer if necessary using
/// [`Core::timer_del`].  See also [`after!`].
///
/// ```ignore
/// at!(instant, ...args-as-for-lazy-macro...);
/// ```
///
/// Implemented using [`Core::timer_add`], [`Actor::apply`] and
/// [`Actor::apply_prep`].
///
/// [`Actor::apply_prep`]: struct.Actor.html#method.apply_prep
/// [`Actor::apply`]: struct.Actor.html#method.apply
/// [`Core::timer_add`]: struct.Core.html#method.timer_add
/// [`Core::timer_del`]: struct.Core.html#method.timer_del
/// [`FixedTimerKey`]: struct.FixedTimerKey.html
/// [`after!`]: macro.after.html
/// [`lazy!`]: macro.lazy.html
#[macro_export]
macro_rules! at {
    ( $inst:expr, $($x:tt)+ ) => {{
        $crate::COVERAGE!(at_0);
        let inst: std::time::Instant = $inst;
        $crate::generic_call!(at_aux (inst) access_core; $($x)+) // Error? Try [actor, core] form
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! at_aux {
    (($inst:ident) $core:ident; $cb:expr) => {{
        $crate::COVERAGE!(at_1);
        $core.timer_add($inst, $cb)
    }};
}

/// Create or update a "Max" timer
///
/// A "Max" timer expires at the latest (greatest) expiry time
/// provided.  See the [`MaxTimerKey`] documentation for the
/// characteristics of this timer.  Modifies a [`MaxTimerKey`]
/// variable or structure member provided by the caller, which should
/// be initialised with `MaxTimerKey::default()`.  If the timer key
/// currently in the variable is invalid or expired, then a new timer
/// is created using the call-args following, and the key stored in
/// the variable.  Otherwise the timer contained in the variable is
/// updated with the provided expiry time, and the call-args are
/// ignored.  If necessary, the timer may be deleted using
/// [`Core::timer_max_del`].
///
/// The syntax of the calls is identical to [`lazy!`], but with a
/// variable reference and `Instant` argument first.
///
/// ```ignore
/// let mut var = MaxTimerKey::default();
///   :::
/// timer_max!(&mut var, instant, ...args-as-for-lazy-macro...);
/// ```
///
/// Implemented using [`Core::timer_max_upd`],
/// [`Core::timer_max_add`], [`Actor::apply`] and
/// [`Actor::apply_prep`].
///
/// [`Actor::apply_prep`]: struct.Actor.html#method.apply_prep
/// [`Actor::apply`]: struct.Actor.html#method.apply
/// [`Core::timer_max_add`]: struct.Core.html#method.timer_max_add
/// [`Core::timer_max_del`]: struct.Core.html#method.timer_max_del
/// [`Core::timer_max_upd`]: struct.Core.html#method.timer_max_upd
/// [`MaxTimerKey`]: struct.MaxTimerKey.html
/// [`lazy!`]: macro.lazy.html
#[macro_export]
macro_rules! timer_max {
    ( $var:expr, $inst:expr, $($x:tt)+ ) => {{
        $crate::COVERAGE!(timer_max_0);
        let var: &mut $crate::MaxTimerKey = $var;
        let inst: std::time::Instant = $inst;
        $crate::generic_call!(timer_max_aux (var, inst) access_core; $($x)+) // Error? Try [actor, core] form
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! timer_max_aux {
    (($var:ident, $inst:ident) $core:ident; $cb:expr) => {{
        $crate::COVERAGE!(timer_max_1);
        if !$core.timer_max_upd(*$var, $inst) {
            *$var = $core.timer_max_add($inst, $cb);
        }
    }};
}

/// Create or update a "Min" timer
///
/// A "Min" timer expires at the smallest (earliest) expiry time
/// provided.  See the [`MinTimerKey`] documentation for the
/// characteristics of this timer.  Modifies a [`MinTimerKey`]
/// variable or structure member provided by the caller, which should
/// be initialised with `MinTimerKey::default()`.  If the timer key
/// currently in the variable is invalid or expired, then a new timer
/// is created using the call-args following, and the key stored in
/// the variable.  Otherwise the timer contained in the variable is
/// updated with the provided expiry time, and the call-args are
/// ignored.  If necessary, the timer may be deleted using
/// [`Core::timer_min_del`].
///
/// The syntax of the calls is identical to [`lazy!`], but with a
/// variable reference and `Instant` argument first.
///
/// ```ignore
/// let mut var = MinTimerKey::default();
///   :::
/// timer_min!(&mut var, instant, ...args-as-for-lazy-macro...);
/// ```
///
/// Implemented using [`Core::timer_min_upd`],
/// [`Core::timer_min_add`], [`Actor::apply`] and
/// [`Actor::apply_prep`].
///
/// [`Actor::apply_prep`]: struct.Actor.html#method.apply_prep
/// [`Actor::apply`]: struct.Actor.html#method.apply
/// [`Core::timer_min_add`]: struct.Core.html#method.timer_min_add
/// [`Core::timer_min_del`]: struct.Core.html#method.timer_min_del
/// [`Core::timer_min_upd`]: struct.Core.html#method.timer_min_upd
/// [`MinTimerKey`]: struct.MinTimerKey.html
/// [`lazy!`]: macro.lazy.html
#[macro_export]
macro_rules! timer_min {
    ( $var:expr, $inst:expr, $($x:tt)+ ) => {{
        $crate::COVERAGE!(timer_min_0);
        let var: &mut $crate::MinTimerKey = $var;
        let inst: std::time::Instant = $inst;
        $crate::generic_call!(timer_min_aux (var, inst) access_core; $($x)+) // Error? Try [actor, core] form
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! timer_min_aux {
    (($var:ident, $inst:ident) $core:ident; $cb:expr) => {{
        $crate::COVERAGE!(timer_min_1);
        if !$core.timer_min_upd(*$var, $inst) {
            *$var = $core.timer_min_add($inst, $cb);
        }
    }};
}

/// Forward data via a [`Fwd`] instance
///
/// ```ignore
/// fwd!([fwd2zz], arg1, arg2...);
/// ```
///
/// There may be zero or more arguments, and they must match the
/// message type.  Implemented using [`Fwd::fwd`]
///
/// [`Fwd::fwd`]: struct.Fwd.html#method.fwd
/// [`Fwd`]: struct.Fwd.html
#[macro_export]
macro_rules! fwd {
    // A single argument isn't passed as a tuple, so has special
    // handling.
    ([ $fwd:expr ], $arg:expr) => {{
        $crate::COVERAGE!(fwd_0);
        $fwd.fwd($arg);
    }};
    ([ $fwd:expr ] $(, $arg:expr)*) => {{
        $crate::COVERAGE!(fwd_1);
        $fwd.fwd(( $($arg ,)* ));
    }};
}

/// Return data via a [`Ret`] instance
///
/// ```ignore
/// ret!([ret2zz], arg1, arg2...);
/// ```
///
/// This consumes the [`Ret`] instance, which means that it cannot be
/// used again.  There may be zero or more arguments, and they must
/// match the message type.  Implemented using [`Ret::ret`].
///
/// [`Ret::ret`]: struct.Ret.html#method.ret
/// [`Ret`]: struct.Ret.html
#[macro_export]
macro_rules! ret {
    // A single argument isn't passed as a tuple, so has special
    // handling.
    ([ $ret:expr ], $arg:expr) => {{
        $crate::COVERAGE!(ret_0);
        $ret.ret($arg);
    }};
    ([ $ret:expr ] $(, $arg:expr)*) => {{
        $crate::COVERAGE!(ret_1);
        $ret.ret(( $($arg ,)* ));
    }};
}

// Common code for `fwd_*!`
#[doc(hidden)]
#[macro_export]
macro_rules! generic_fwd {
    // Calling actors
    ($handler:ident; [$actor:expr], $method:ident ( $($x:expr),* ) as ( $($t:ty),* )) => {{
        $crate::COVERAGE!(generic_fwd_0);
        let actor = $actor.access_actor().clone();  // Expecting Actor or Cx ref
        let _args = ( $($x,)* );
        $crate::indices!([$(($x))*] [$(($t))*] generic_fwd_ready $handler actor _args ($($t,)*) $method)
    }};
    ($handler:ident; [$actor:expr], $type:ident::$method:ident ( $($x:expr),* ) as ( $($t:ty),* )) => {{
        $crate::COVERAGE!(generic_fwd_1);
        let actor = $actor.access_actor().clone();  // Expecting Actor or Cx ref
        let _args = ( $($x,)* );
        $crate::indices!([$(($x))*] [$(($t))*] generic_fwd_prep $handler actor _args ($($t,)*) <$type> $method)
    }};
    ($handler:ident; [$actor:expr], <$type:ty>::$method:ident ( $($x:expr),* ) as ( $($t:ty),* )) => {{
        $crate::COVERAGE!(generic_fwd_2);
        let actor = $actor.access_actor().clone();  // Expecting Actor or Cx ref
        let _args = ( $($x,)* );
        $crate::indices!([$(($x))*] [$(($t))*] generic_fwd_prep $handler actor _args ($($t,)*) <$type> $method)
    }};
    // Calling closures
    ($handler:ident; [$cx:expr], |$this:pat_param, $cxid:pat_param, $arg:ident : $t:ty| $($body:tt)+) => {{
        $crate::COVERAGE!(generic_fwd_3);
        let cx: &mut $crate::Cx<'_, _> = $cx;  // Expecting Cx ref
        let actor = cx.this().clone();
        $crate::$handler!(ready actor;
                           move |$this, $cxid, $arg: $t| $($body)*;
                           std::compile_error!("`ret_to!` with a closure requires a single Option argument"))
    }};
    ($handler:ident; [$cx:expr], |$this:pat_param, $cxid:pat_param $(, $arg:ident : $t:ty)*| $($body:tt)+) => {{
        $crate::COVERAGE!(generic_fwd_4);
        let cx: &mut $crate::Cx<'_, _> = $cx;  // Expecting Cx ref
        let actor = cx.this().clone();
        $crate::$handler!(ready actor;
                           move |$this, $cxid, ($($arg),*): ($($t),*)| $($body)*;
                           std::compile_error!("`ret_to!` with a closure requires a single Option argument"))
    }};
    ($handler:ident; [$cx:expr], move | $($x:tt)*) => {{
        std::compile_error!("Do not add `move` to closures as they get an implicit `move` anyway");
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! generic_fwd_ready {
    ($handler:ident $actor:ident $args:ident ($t:ty,) $method:ident [$($xi:tt)*] [$($ti:tt)*]) => {{
        $crate::COVERAGE!(generic_fwd_5);
        $crate::$handler!(ready $actor;
                           move |a, cx, m: $t| a.$method(cx $(, $args.$xi)* , m);
                           move |a, cx, m: Option<$t>| a.$method(cx $(, $args.$xi)* , m))
    }};
    ($handler:ident $actor:ident $args:ident ($($t:ty,)*) $method:ident [$($xi:tt)*] [$($ti:tt)*]) => {{
        $crate::COVERAGE!(generic_fwd_6);
        $crate::$handler!(ready $actor;
                           move |a, cx, _m: ($($t,)*)| a.$method(cx $(, $args.$xi)* $(, _m.$ti)*);
                           move |a, cx, m: Option<($($t,)*)>| a.$method(cx $(, $args.$xi)*, m))
    }};
}
#[doc(hidden)]
#[macro_export]
macro_rules! generic_fwd_prep {
    ($handler:ident $actor:ident $args:ident ($t:ty,) <$atyp:ty> $method:ident [$($xi:tt)*] [$($ti:tt)*]) => {{
        $crate::COVERAGE!(generic_fwd_7);
        $crate::$handler!(prep $actor;
                           move |cx, m: $t| <$atyp>::$method(cx $(, $args.$xi)* , m);
                           move |cx, m: Option<$t>| <$atyp>::$method(cx $(, $args.$xi)* , m))
    }};
    ($handler:ident $actor:ident $args:ident ($($t:ty,)*) <$atyp:ty> $method:ident [$($xi:tt)*] [$($ti:tt)*]) => {{
        $crate::COVERAGE!(generic_fwd_8);
        $crate::$handler!(prep $actor;
                           move |cx, _m: ($($t,)*)| <$atyp>::$method(cx $(, $args.$xi)* $(, _m.$ti)*);
                           move |cx, m: Option<($($t,)*)>| <$atyp>::$method(cx $(, $args.$xi)*, m))
    }};
}

/// Create a [`Fwd`] instance for actor calls
///
/// The syntax is similar to that used for [`call!`], except that the
/// call is followed by `as` and a tuple of argument types (which may
/// be empty).  These types are the types of the arguments accepted by
/// the [`Fwd`] instance when it is called, and which are appended to
/// the argument list of the method call.  So each call to a method is
/// made up of first the fixed arguments (if any) provided at the time
/// the [`Fwd`] instance was created, followed by the variable arguments
/// (if any) provided when the [`Fwd`] instance was called.  This must
/// match the signature of the method itself.
///
/// `as` is used here because this is a standard Rust token that can
/// introduce a tuple and so `rustfmt` can format the code, although
/// something like `with` would make more sense.
///
/// ```ignore
/// // Forward to a method in this actor or in another actor
/// fwd_to!([cx], method(arg1, arg2...) as (type1, type2...));
/// fwd_to!([actorxx], method(arg1, arg2...) as (type1, type2...));
///
/// // Forward to a method whilst in the 'Prep' state
/// fwd_to!([cx], Self::method(arg1, arg2...) as (type1, type2...));
/// fwd_to!([cx], <path::Type>::method(arg1, arg2...) as (type1, type2...));
/// fwd_to!([actoryy], Type::method(arg1, arg2...) as (type1, type2...));
/// fwd_to!([actorzz], <path::Type>::method(arg1, arg2...) as (type1, type2...));
///
/// // Forward a call to inline code which refers to this actor.  In
/// // this case the `Fwd` argument list is extracted from the closure
/// // argument list and no `as` section is required.  Closure is
/// // always treated as a `move` closure.
/// fwd_to!([cx], |this, cx, arg1: type1, arg2: type2...| ...code...);
/// ```
///
/// Implemented using [`Fwd::to_actor`] or [`Fwd::to_actor_prep`].
///
/// [`Fwd::to_actor_prep`]: struct.Fwd.html#method.to_actor_prep
/// [`Fwd::to_actor`]: struct.Fwd.html#method.to_actor
/// [`Fwd`]: struct.Fwd.html
/// [`call!`]: macro.call.html
#[macro_export]
macro_rules! fwd_to {
    ($($x:tt)*) => {{
        $crate::COVERAGE!(fwd_to_0);
        $crate::generic_fwd!(fwd_to_aux; $($x)*)
    }}
}
#[doc(hidden)]
#[macro_export]
macro_rules! fwd_to_aux {
    (ready $actor:ident; $cb:expr; $cb2:expr) => {{
        $crate::COVERAGE!(fwd_to_1);
        $crate::Fwd::to_actor($actor, $cb)
    }};
    (prep $actor:ident; $cb:expr; $cb2:expr) => {{
        $crate::COVERAGE!(fwd_to_2);
        $crate::Fwd::to_actor_prep($actor, $cb)
    }};
}

/// Create a [`Fwd`] instance which panics when called
///
/// ```ignore
/// fwd_panic!(panic_msg)
/// ```
///
/// Argument will typically be a `String` or `&str`.  Note that this
/// will receive and ignore any message type.  Implemented using
/// [`Fwd::panic`].
///
/// [`Fwd::panic`]: struct.Fwd.html#method.panic
/// [`Fwd`]: struct.Fwd.html
#[macro_export]
macro_rules! fwd_panic {
    ($arg:expr) => {{
        $crate::COVERAGE!(fwd_panic_0);
        $crate::Fwd::panic($arg)
    }};
}

/// Create a [`Fwd`] instance which performs an arbitrary action
///
/// The action is performed immediately at the point in the code where
/// the message is forwarded.  So this is executed synchronously
/// rather than asynchronously.  However it will normally be used to
/// defer a call, since it doesn't have access to any actor, just the
/// message data.  If it doesn't have an actor reference available, it
/// will probably need to capture a [`Deferrer`] in the closure.
///
/// ```ignore
/// fwd_do!(|msg| ...);
/// ```
///
/// Implemented using [`Fwd::new`].
///
/// [`Deferrer`]: struct.Deferrer.html
/// [`Fwd::new`]: struct.Fwd.html#method.new
/// [`Fwd`]: struct.Fwd.html
#[macro_export]
macro_rules! fwd_do {
    ($cb:expr) => {{
        $crate::COVERAGE!(fwd_do_0);
        $crate::Fwd::new($cb)
    }};
}

/// Create a [`Fwd`] instance which does nothing at all
///
/// ```ignore
/// fwd_nop!();
/// ```
///
/// NOP means "no operation".  Implemented using [`Fwd::new`].
///
/// [`Fwd::new`]: struct.Fwd.html#method.new
/// [`Fwd`]: struct.Fwd.html
#[macro_export]
macro_rules! fwd_nop {
    () => {{
        $crate::COVERAGE!(fwd_nop_0);
        $crate::Fwd::new(|_| {})
    }};
}

/// Create a [`Ret`] instance for actor calls
///
/// This is guaranteed to be called **exactly once**.  So it will be
/// called even if the [`Ret`] is dropped.  (The guarantee can be
/// broken by leaking memory using `mem::forget`, though, so don't do
/// that!)  The message is passed as `Some(msg)` if called normally,
/// or as `None` if the [`Ret`] instance was dropped, e.g. if it
/// couldn't be delivered somewhere.  The underlying closure is a
/// `FnOnce`, so non-Copy types can be passed.  The syntax is the same
/// as for [`fwd_to!`], and the message types are specified as normal.
/// However the message is received in a single argument on the
/// receiving method, either `Option<type>` for a single type, or else
/// `Option<(type1, type2...)>`.
///
/// See [`ret_some_to!`] instead if you're only interested in the
/// `Some(msg)` case.
///
/// ```ignore
/// ret_to!(...arguments-as-for-fwd_to-macro...);
/// ```
///
/// The closure form must use a single `Option` as above as the
/// argument type, containing all the types passed from the [`Ret`].
///
/// Implemented using [`Ret::to_actor`] or [`Ret::to_actor_prep`].
///
/// [`Ret::to_actor_prep`]: struct.Ret.html#method.to_actor_prep
/// [`Ret::to_actor`]: struct.Ret.html#method.to_actor
/// [`Ret`]: struct.Ret.html
/// [`fwd_to!`]: macro.fwd_to.html
/// [`ret_some_to!`]: macro.ret_some_to.html
#[macro_export]
macro_rules! ret_to {
    ([$cx:expr], |$this:pat_param, $cxid:pat_param, $arg:ident : Option<$t:ty>| $($body:tt)+) => {{
        $crate::COVERAGE!(ret_to_0);
        let cx: &mut $crate::Cx<'_, _> = $cx;  // Expecting Cx ref
        let actor = cx.this().clone();
        $crate::Ret::to_actor(actor, move |$this, $cxid, $arg: Option<$t>| $($body)*)
    }};
    ([$cx:expr], move | $($x:tt)*) => {{
        std::compile_error!("Do not add `move` to closures as they get an implicit `move` anyway");
    }};
    // Closures not matching above will get caught below, giving a
    // compilation error
    ($($x:tt)*) => {{
        $crate::COVERAGE!(ret_to_1);
        $crate::generic_fwd!(ret_to_aux; $($x)*)
    }}
}
#[doc(hidden)]
#[macro_export]
macro_rules! ret_to_aux {
    (ready $actor:ident; $cb:expr; $cb2:expr) => {{
        $crate::COVERAGE!(ret_to_2);
        $crate::Ret::to_actor($actor, $cb2)
    }};
    (prep $actor:ident; $cb:expr; $cb2:expr) => {{
        $crate::COVERAGE!(ret_to_3);
        $crate::Ret::to_actor_prep($actor, $cb2)
    }};
}

/// Create a [`Ret`] instance for actor calls, ignoring drops
///
/// This is guaranteed to be called **at most once**.  Dropping the
/// [`Ret`] instance is ignored, unlike [`ret_to!`], so the message is
/// passed through without an `Option` wrapper, just like [`fwd_to!`].
/// The underlying closure is a `FnOnce`, so non-Copy types can be
/// passed.  The syntax is the same as for [`fwd_to!`], and messages
/// are received in exactly the same way in the target actor method.
///
/// ```ignore
/// ret_some_to!(...arguments-as-for-fwd_to-macro...);
/// ```
///
/// Implemented using [`Ret::some_to_actor`] or [`Ret::some_to_actor_prep`].
///
/// [`Ret::some_to_actor_prep`]: struct.Ret.html#method.some_to_actor_prep
/// [`Ret::some_to_actor`]: struct.Ret.html#method.some_to_actor
/// [`Ret`]: struct.Ret.html
/// [`fwd_to!`]: macro.fwd_to.html
/// [`ret_to!`]: macro.ret_to.html
#[macro_export]
macro_rules! ret_some_to {
    ($($x:tt)*) => {{
        $crate::COVERAGE!(ret_some_to_0);
        $crate::generic_fwd!(ret_some_to_aux; $($x)*)
    }}
}
#[doc(hidden)]
#[macro_export]
macro_rules! ret_some_to_aux {
    (ready $actor:ident; $cb:expr; $cb2:expr) => {{
        $crate::COVERAGE!(ret_some_to_1);
        $crate::Ret::some_to_actor($actor, $cb)
    }};
    (prep $actor:ident; $cb:expr; $cb2:expr) => {{
        $crate::COVERAGE!(ret_some_to_2);
        $crate::Ret::some_to_actor_prep($actor, $cb)
    }};
}

/// Create a [`Ret`] instance which performs an arbitrary action
///
/// The action is performed immediately at the point in the code where
/// the message is returned.  So this is executed synchronously rather
/// than asynchronously.  However it will normally be used to defer a
/// call, since it doesn't have access to any actor, just the message
/// data.  If it doesn't have an actor reference available, it will
/// probably need to capture a [`Deferrer`] in the closure.
///
/// ```ignore
/// ret_do!(|msg| ...);
/// ```
///
/// Implemented using [`Ret::new`].
///
/// [`Deferrer`]: struct.Deferrer.html
/// [`Ret::new`]: struct.Ret.html#method.new
/// [`Ret`]: struct.Ret.html
#[macro_export]
macro_rules! ret_do {
    ($cb:expr) => {{
        $crate::COVERAGE!(ret_do_0);
        $crate::Ret::new($cb)
    }};
}

/// Create a [`Ret`] instance which performs an arbitrary action, ignoring drops
///
/// Like [`ret_some_to!`], this ignores the case of the [`Ret`] instance
/// being dropped, so the message is received without the wrapping
/// `Option`.  The action is performed immediately at the point in the
/// code where the message is returned.  So this is executed
/// synchronously rather than asynchronously.  However it will
/// normally be used to defer a call, since it doesn't have access to
/// any actor, just the message data.  If it doesn't have an actor
/// reference available, it will probably need to capture a
/// [`Deferrer`] in the closure.
///
/// ```ignore
/// ret_some_do!(|msg| ...);
/// ```
///
/// Implemented using [`Ret::new`].
///
/// [`Deferrer`]: struct.Deferrer.html
/// [`Ret::new`]: struct.Ret.html#method.new
/// [`Ret`]: struct.Ret.html
/// [`ret_some_to!`]: macro.ret_some_to.html
#[macro_export]
macro_rules! ret_some_do {
    ($cb:expr) => {{
        $crate::COVERAGE!(ret_some_do_0);
        let cb = $cb;
        $crate::Ret::new(move |m| {
            if let Some(m) = m {
                cb(m);
            }
        })
    }};
}

/// Create a [`Ret`] instance which panics when called
///
/// ```ignore
/// ret_panic!(panic_msg)
/// ```
///
/// Ignores the case where the [`Ret`] instance is dropped.  Argument
/// will typically be a `String` or `&str`.  Note that this will
/// receive and ignore any message type.  Implemented using
/// [`Ret::panic`].
///
/// [`Ret::panic`]: struct.Ret.html#method.panic
/// [`Ret`]: struct.Ret.html
#[macro_export]
macro_rules! ret_panic {
    ($arg:expr) => {{
        $crate::COVERAGE!(ret_panic_0);
        $crate::Ret::panic($arg)
    }};
}

/// Create a [`Ret`] instance which does nothing at all
///
/// ```ignore
/// ret_nop!();
/// ```
///
/// NOP means "no operation".  Implemented using [`Ret::new`].
///
/// [`Ret::new`]: struct.Ret.html#method.new
/// [`Ret`]: struct.Ret.html
#[macro_export]
macro_rules! ret_nop {
    () => {{
        $crate::COVERAGE!(ret_nop_0);
        $crate::Ret::new(|_| {})
    }};
}

/// Create a [`Ret`] instance which shuts down the event loop
///
/// ```ignore
/// ret_shutdown!(core);
/// ```
///
/// This can be used as the notify handler on an actor to shut down
/// the event loop once that actor terminates.  The reason for the
/// actor's failure is passed through, and can be recovered after loop
/// termination using [`Core::shutdown_reason`].  See also
/// [`Ret::new`] and [`Core::shutdown`].
///
/// [`Core::shutdown_reason`]: struct.Core.html#method.shutdown_reason
/// [`Core::shutdown`]: struct.Core.html#method.shutdown
/// [`Ret::new`]: struct.Ret.html#method.new
/// [`Ret`]: struct.Ret.html
#[macro_export]
macro_rules! ret_shutdown {
    ($core:expr) => {{
        $crate::COVERAGE!(ret_shutdown_0);
        let core = $core.access_core();
        let deferrer = core.deferrer();
        $crate::Ret::new(move |m| {
            if let Some(cause) = m {
                deferrer.defer(|s| s.shutdown(cause));
            } else {
                deferrer.defer(|s| s.shutdown($crate::StopCause::Dropped));
            }
        })
    }};
}

/// Create a [`Ret`] instance that terminates this actor with failure
///
/// ```ignore
/// ret_fail!(cx, "format...", fmt-args...);
/// ret_fail!(cx, "literal...");
/// ret_fail!(cx, error);
/// ```
///
/// This accepts any message, and terminates the actor with the given
/// failure message/error, as for [`fail!`].
///
/// This can be used as a termination notifier for a child actor in
/// the [`actor!`] or [`actor_new!`] call.  It allows cascading actor
/// failure upwards until it reaches an ancestor that can handle it.
///
/// Using this macro, even successful termination of the child actor
/// is treated as unexpected and a cause for failure, i.e. using this
/// assumes that the child is normally supposed to outlive the parent
/// actor, e.g. it only dies when the parent actor drops the reference
/// to it.  If you wish to allow the child to terminate successfully
/// or be killed, consider using [`ret_failthru!`] instead.
///
/// The arguments are treated as for [`fail!`], calling on to
/// [`Cx::fail`], [`Cx::fail_str`] or [`Cx::fail_string`].
///
/// Note that errors are not normally chained in **Stakker**, i.e. the
/// failure wouldn't normally contain details of the failures which
/// lead to that failure.  The detailed history of a failure can be
/// analyzed by running with the **logger** feature enabled, and
/// looking at `Open` and `Close` events.
///
/// [`Cx::fail_str`]: struct.Cx.html#method.fail_str
/// [`Cx::fail_string`]: struct.Cx.html#method.fail_string
/// [`Cx::fail`]: struct.Cx.html#method.fail
/// [`Ret`]: struct.Ret.html
/// [`actor!`]: macro.actor.html
/// [`actor_new!`]: macro.actor_new.html
/// [`fail!`]: macro.fail.html
/// [`ret_failthru!`]: macro.ret_failthru.html
#[macro_export]
macro_rules! ret_fail {
    ($cx:expr, $msg:literal) => {{
        $crate::COVERAGE!(ret_fail_0);
        let cx: &mut $crate::Cx<'_, _> = $cx;
        let actor = cx.this().clone();
        $crate::Ret::to_actor(actor, move |_, cx, _| cx.fail_str($msg))
    }};
    ($cx:expr, $fmt:literal $(, $arg:expr)*) => {{
        $crate::COVERAGE!(ret_fail_1);
        let message = format!($fmt $(, $arg)*);
        let cx: &mut $crate::Cx<'_, _> = $cx;
        let actor = cx.this().clone();
        $crate::Ret::to_actor(actor, move |_, cx, _| cx.fail_string(message))
    }};
    ($cx:expr, $error:expr) => {{
        $crate::COVERAGE!(ret_fail_2);
        let error = $error;
        let cx: &mut $crate::Cx<'_, _> = $cx;
        let actor = cx.this().clone();
        $crate::Ret::to_actor(actor, move |_, cx, _| cx.fail(error))
    }};
}

/// Create a [`Ret`] instance that passes through actor failure
///
/// ```ignore
/// ret_failthru!(cx, "format...", fmt-args...);
/// ret_failthru!(cx, "literal...");
/// ret_failthru!(cx, error);
/// ```
///
/// This is designed to be used as a termination notifier for a child
/// actor in the [`actor!`] or [`actor_new!`] call.  It receives an
/// `Option<StopCause>` and terminates the current actor if the child
/// actor failed or lost connection.  So this can be used in actors to
/// cascade failure upwards until it reaches an ancestor that can
/// handle it.
///
/// Note that this does not terminate this actor if the child actor
/// terminated successfully or if it was killed or dropped.  Only
/// failure or lost connection is passed on as a failure.  If the
/// child is never expected to terminate early, consider using
/// [`ret_fail!`] instead, or writing your own termination handler if
/// the situation is more complex.
///
/// The arguments are treated as for [`fail!`], calling on to
/// [`Cx::fail`], [`Cx::fail_str`] or [`Cx::fail_string`].
///
/// Note that errors are not normally chained in **Stakker**, i.e. the
/// failure wouldn't normally contain details of the failures which
/// lead to that failure.  The detailed history of a failure can be
/// analyzed by running with the **logger** feature enabled, and
/// looking at `Open` and `Close` events.
///
/// [`Cx::fail_str`]: struct.Cx.html#method.fail_str
/// [`Cx::fail_string`]: struct.Cx.html#method.fail_string
/// [`Cx::fail`]: struct.Cx.html#method.fail
/// [`Ret`]: struct.Ret.html
/// [`actor!`]: macro.actor.html
/// [`actor_new!`]: macro.actor_new.html
/// [`fail!`]: macro.fail.html
/// [`ret_fail!`]: macro.ret_fail.html
#[macro_export]
macro_rules! ret_failthru {
    ($cx:expr, $msg:literal) => {{
        $crate::COVERAGE!(ret_failthru_0);
        let cx: &mut $crate::Cx<'_, _> = $cx;
        let actor = cx.this().clone();
        $crate::Ret::some_to_actor(actor, move |_, cx, m: StopCause| {
            if matches!(m, StopCause::Lost | StopCause::Failed(_)) {
                cx.fail_str($msg);
            }
        })
    }};
    ($cx:expr, $fmt:literal $(, $arg:expr)*) => {{
        $crate::COVERAGE!(ret_failthru_1);
        let message = format!($fmt $(, $arg)*);
        let cx: &mut $crate::Cx<'_, _> = $cx;
        let actor = cx.this().clone();
        $crate::Ret::some_to_actor(actor, move |_, cx, m: StopCause| {
            if matches!(m, StopCause::Lost | StopCause::Failed(_)) {
                cx.fail_string(message);
            }
        })
    }};
    ($cx:expr, $error:expr) => {{
        $crate::COVERAGE!(ret_failthru_2);
        let error = $error;
        let cx: &mut $crate::Cx<'_, _> = $cx;
        let actor = cx.this().clone();
        $crate::Ret::some_to_actor(actor, move |_, cx, m: StopCause| {
            if matches!(m, StopCause::Lost | StopCause::Failed(_)) {
                cx.fail(error)
            }
        })
    }};
}

/// Indicate failure of the actor
///
/// ```ignore
/// fail!(cx, "format...", fmt-args...);
/// fail!(cx, "literal...");
/// fail!(cx, error);
/// ```
///
/// The first form creates a formatted string using `format!`, and
/// passes it to [`Cx::fail_string`].  The second form passes the
/// given literal directly to [`Cx::fail_str`].  The third form passes
/// the given error expression directly to [`Cx::fail`].
///
/// As soon as the currently-running actor call finishes, the actor
/// will be terminated.  Actor state will be dropped, and any further
/// calls to this actor will be discarded.  The termination status is
/// passed back to the [`StopCause`] handler provided when the actor
/// was created.
///
/// [`Cx::fail_str`]: struct.Cx.html#method.fail_str
/// [`Cx::fail_string`]: struct.Cx.html#method.fail_string
/// [`Cx::fail`]: struct.Cx.html#method.fail
/// [`StopCause`]: enum.StopCause.html
#[macro_export]
macro_rules! fail {
    ($cx:expr, $msg:literal) => {{
        $crate::COVERAGE!(fail_0);
        $cx.fail_str($msg);
    }};
    ($cx:expr, $fmt:literal $(, $arg:expr)*) => {{
        $crate::COVERAGE!(fail_1);
        $cx.fail_string(format!($fmt $(, $arg)*));
    }};
    ($cx:expr, $error:expr) => {{
        $crate::COVERAGE!(fail_2);
        $cx.fail($error);
    }};
}

/// Indicate successful termination of the actor
///
/// ```ignore
/// stop!(cx);
/// ```
///
/// This just calls [`Cx::stop`].  It is included for symmetry with
/// [`fail!`].
///
/// As soon as the currently-running actor call finishes, the actor
/// will be terminated.  Actor state will be dropped, and any further
/// calls to this actor will be discarded.  The termination status is
/// passed back to the [`StopCause`] handler provided when the actor
/// was created.
///
/// [`Cx::stop`]: struct.Cx.html#method.stop
/// [`StopCause`]: enum.StopCause.html
/// [`fail!`]: macro.fail.html
#[macro_export]
macro_rules! stop {
    ($cx:expr) => {{
        $crate::COVERAGE!(stop_0);
        $cx.stop();
    }};
}

/// Kill an actor
///
/// ```ignore
/// kill!(actor, "format...", fmt-args...);
/// kill!(actor, "literal...");
/// kill!(actor, error);
/// ```
///
/// This kills another actor asynchronously.  The kill is deferred to
/// the main queue to execute as soon as possible.  `actor` must be an
/// `ActorOwn` reference.  It's not possible to kill another actor
/// with a simple `Actor` reference.
///
/// The first form creates a formatted string using `format!`, and
/// passes it to [`ActorOwn::kill_string`].  The second form passes
/// the given literal directly to [`ActorOwn::kill_str`].  The third
/// form passes the given error expression directly to
/// [`ActorOwn::kill`].
///
/// [`ActorOwn::kill_str`]: struct.ActorOwn.html#method.kill_str
/// [`ActorOwn::kill_string`]: struct.ActorOwn.html#method.kill_string
/// [`ActorOwn::kill`]: struct.ActorOwn.html#method.kill
#[macro_export]
macro_rules! kill {
    ($actor:expr, $msg:literal) => {{
        $crate::COVERAGE!(kill_0);
        let actor: $crate::ActorOwn<_> = $actor.owned();
        $actor.defer(move |s| actor.kill_str(s, $msg));
    }};
    ($actor:expr, $fmt:literal $(, $arg:expr)*) => {{
        $crate::COVERAGE!(kill_1);
        let actor: $crate::ActorOwn<_> = $actor.owned();
        let msg = format!($fmt $(, $arg)*);
        $actor.defer(move |s| actor.kill_string(s, msg));
    }};
    ($actor:expr, $error:expr) => {{
        $crate::COVERAGE!(kill_2);
        let actor: $crate::ActorOwn<_> = $actor.owned();
        let error = $error;
        $actor.defer(move |s| actor.kill(s, error));
    }};
}