1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
//! `sshsig` implementation.

use crate::{public, Algorithm, Error, HashAlg, Result, Signature, SigningKey};
use alloc::{string::String, string::ToString, vec::Vec};
use core::str::FromStr;
use encoding::{
    pem::{LineEnding, PemLabel},
    CheckedSum, Decode, DecodePem, Encode, EncodePem, Reader, Writer,
};
use signature::Verifier;

type Version = u32;

/// `sshsig` provides a general-purpose signature format based on SSH keys and
/// wire formats.
///
/// These signatures can be produced using `ssh-keygen -Y sign`. They're
/// encoded as PEM and begin with the following:
///
/// ```text
/// -----BEGIN SSH SIGNATURE-----
/// ```
///
/// See [PROTOCOL.sshsig] for more information.
///
/// [PROTOCOL.sshsig]: https://cvsweb.openbsd.org/src/usr.bin/ssh/PROTOCOL.sshsig?annotate=HEAD
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct SshSig {
    version: Version,
    public_key: public::KeyData,
    namespace: String,
    reserved: Vec<u8>,
    hash_alg: HashAlg,
    signature: Signature,
}

impl SshSig {
    /// Supported version.
    pub const VERSION: Version = 1;

    /// The preamble is the six-byte sequence "SSHSIG".
    ///
    /// It is included to ensure that manual signatures can never be confused
    /// with any message signed during SSH user or host authentication.
    const MAGIC_PREAMBLE: &'static [u8] = b"SSHSIG";

    /// Create a new signature with the given public key, namespace, hash
    /// algorithm, and signature.
    pub fn new(
        public_key: public::KeyData,
        namespace: impl Into<String>,
        hash_alg: HashAlg,
        signature: Signature,
    ) -> Result<Self> {
        let version = Self::VERSION;
        let namespace = namespace.into();
        let reserved = Vec::new();

        if namespace.is_empty() {
            return Err(Error::Namespace);
        }

        Ok(Self {
            version,
            public_key,
            namespace,
            reserved,
            hash_alg,
            signature,
        })
    }

    /// Decode signature from PEM which begins with the following:
    ///
    /// ```text
    /// -----BEGIN SSH SIGNATURE-----
    /// ```
    pub fn from_pem(pem: impl AsRef<[u8]>) -> Result<Self> {
        Self::decode_pem(pem)
    }

    /// Encode signature as PEM which begins with the following:
    ///
    /// ```text
    /// -----BEGIN SSH SIGNATURE-----
    /// ```
    pub fn to_pem(&self, line_ending: LineEnding) -> Result<String> {
        Ok(self.encode_pem_string(line_ending)?)
    }

    /// Sign the given message with the provided signing key.
    pub fn sign<S: SigningKey>(
        signing_key: &S,
        namespace: &str,
        hash_alg: HashAlg,
        msg: &[u8],
    ) -> Result<Self> {
        if namespace.is_empty() {
            return Err(Error::Namespace);
        }

        if signing_key.public_key().is_sk_ed25519() {
            return Err(Algorithm::SkEd25519.unsupported_error());
        }

        #[cfg(feature = "ecdsa")]
        if signing_key.public_key().is_sk_ecdsa_p256() {
            return Err(Algorithm::SkEcdsaSha2NistP256.unsupported_error());
        }

        let signed_data = Self::signed_data(namespace, hash_alg, msg)?;
        let signature = signing_key.try_sign(&signed_data)?;
        Self::new(signing_key.public_key(), namespace, hash_alg, signature)
    }

    /// Get the raw message over which the signature for a given message
    /// needs to be computed.
    ///
    /// This is a low-level function intended for uses cases which can't be
    /// expressed using [`SshSig::sign`], such as if the [`SigningKey`] trait
    /// can't be used for some reason.
    ///
    /// Once a [`Signature`] has been computed over the returned byte vector,
    /// [`SshSig::new`] can be used to construct the final signature.
    pub fn signed_data(namespace: &str, hash_alg: HashAlg, msg: &[u8]) -> Result<Vec<u8>> {
        if namespace.is_empty() {
            return Err(Error::Namespace);
        }

        SignedData {
            namespace,
            reserved: &[],
            hash_alg,
            hash: hash_alg.digest(msg).as_slice(),
        }
        .to_bytes()
    }

    /// Verify the given message against this signature.
    ///
    /// Note that this method does not verify the public key or namespace
    /// are correct and thus is crate-private so as to ensure these parameters
    /// are always authenticated by users of the public API.
    pub(crate) fn verify(&self, msg: &[u8]) -> Result<()> {
        let signed_data = SignedData {
            namespace: self.namespace.as_str(),
            reserved: self.reserved.as_slice(),
            hash_alg: self.hash_alg,
            hash: self.hash_alg.digest(msg).as_slice(),
        }
        .to_bytes()?;

        Ok(self.public_key.verify(&signed_data, &self.signature)?)
    }

    /// Get the signature algorithm.
    pub fn algorithm(&self) -> Algorithm {
        self.signature.algorithm()
    }

    /// Get version number for this signature.
    ///
    /// Verifiers MUST reject signatures with versions greater than those
    /// they support.
    pub fn version(&self) -> Version {
        self.version
    }

    /// Get public key which corresponds to the signing key that produced
    /// this signature.
    pub fn public_key(&self) -> &public::KeyData {
        &self.public_key
    }

    /// Get the namespace (i.e. domain identifier) for this signature.
    ///
    /// The purpose of the namespace value is to specify a unambiguous
    /// interpretation domain for the signature, e.g. file signing.
    /// This prevents cross-protocol attacks caused by signatures
    /// intended for one intended domain being accepted in another.
    /// The namespace value MUST NOT be the empty string.
    pub fn namespace(&self) -> &str {
        &self.namespace
    }

    /// Get reserved data associated with this signature. Typically empty.
    ///
    /// The reserved value is present to encode future information
    /// (e.g. tags) into the signature. Implementations should ignore
    /// the reserved field if it is not empty.
    pub fn reserved(&self) -> &[u8] {
        &self.reserved
    }

    /// Get the hash algorithm used to produce this signature.
    ///
    /// Data to be signed is first hashed with the specified `hash_alg`.
    /// This is done to limit the amount of data presented to the signature
    /// operation, which may be of concern if the signing key is held in limited
    /// or slow hardware or on a remote ssh-agent. The supported hash algorithms
    /// are "sha256" and "sha512".
    pub fn hash_alg(&self) -> HashAlg {
        self.hash_alg
    }

    /// Get the structured signature over the given message.
    pub fn signature(&self) -> &Signature {
        &self.signature
    }

    /// Get the bytes which comprise the serialized signature.
    pub fn signature_bytes(&self) -> &[u8] {
        self.signature.as_bytes()
    }
}

impl Decode for SshSig {
    type Error = Error;

    fn decode(reader: &mut impl Reader) -> Result<Self> {
        let mut magic_preamble = [0u8; Self::MAGIC_PREAMBLE.len()];
        reader.read(&mut magic_preamble)?;

        if magic_preamble != Self::MAGIC_PREAMBLE {
            return Err(Error::FormatEncoding);
        }

        let version = Version::decode(reader)?;

        if version > Self::VERSION {
            return Err(Error::Version { number: version });
        }

        let public_key = reader.read_prefixed(public::KeyData::decode)?;
        let namespace = String::decode(reader)?;

        if namespace.is_empty() {
            return Err(Error::Namespace);
        }

        let reserved = Vec::decode(reader)?;
        let hash_alg = HashAlg::decode(reader)?;
        let signature = reader.read_prefixed(Signature::decode)?;

        Ok(Self {
            version,
            public_key,
            namespace,
            reserved,
            hash_alg,
            signature,
        })
    }
}

impl Encode for SshSig {
    fn encoded_len(&self) -> encoding::Result<usize> {
        [
            Self::MAGIC_PREAMBLE.len(),
            self.version.encoded_len()?,
            self.public_key.encoded_len_prefixed()?,
            self.namespace.encoded_len()?,
            self.reserved.encoded_len()?,
            self.hash_alg.encoded_len()?,
            self.signature.encoded_len_prefixed()?,
        ]
        .checked_sum()
    }

    fn encode(&self, writer: &mut impl Writer) -> encoding::Result<()> {
        writer.write(Self::MAGIC_PREAMBLE)?;
        self.version.encode(writer)?;
        self.public_key.encode_prefixed(writer)?;
        self.namespace.encode(writer)?;
        self.reserved.encode(writer)?;
        self.hash_alg.encode(writer)?;
        self.signature.encode_prefixed(writer)?;
        Ok(())
    }
}

impl FromStr for SshSig {
    type Err = Error;

    fn from_str(s: &str) -> Result<Self> {
        Self::from_pem(s)
    }
}

impl PemLabel for SshSig {
    const PEM_LABEL: &'static str = "SSH SIGNATURE";
}

impl ToString for SshSig {
    fn to_string(&self) -> String {
        self.to_pem(LineEnding::default())
            .expect("SSH signature encoding error")
    }
}

/// Data to be signed.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
struct SignedData<'a> {
    namespace: &'a str,
    reserved: &'a [u8],
    hash_alg: HashAlg,
    hash: &'a [u8],
}

impl<'a> SignedData<'a> {
    fn to_bytes(self) -> Result<Vec<u8>> {
        let mut signed_bytes = Vec::with_capacity(self.encoded_len()?);
        self.encode(&mut signed_bytes)?;
        Ok(signed_bytes)
    }
}

impl Encode for SignedData<'_> {
    fn encoded_len(&self) -> encoding::Result<usize> {
        [
            SshSig::MAGIC_PREAMBLE.len(),
            self.namespace.encoded_len()?,
            self.reserved.encoded_len()?,
            self.hash_alg.encoded_len()?,
            self.hash.encoded_len()?,
        ]
        .checked_sum()
    }

    fn encode(&self, writer: &mut impl Writer) -> encoding::Result<()> {
        writer.write(SshSig::MAGIC_PREAMBLE)?;
        self.namespace.encode(writer)?;
        self.reserved.encode(writer)?;
        self.hash_alg.encode(writer)?;
        self.hash.encode(writer)?;
        Ok(())
    }
}