1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
pub mod mesh_data;
pub mod modl_data;
pub mod skel_data;

use std::io::{Read, Write};
use std::ops::Mul;

use binread::io::{Seek, SeekFrom};
use binread::BinReaderExt;
use binread::{BinRead, BinResult};
use half::f16;
use ssbh_lib::SsbhArray;

fn read_data<R: Read + Seek, TIn: BinRead, TOut: From<TIn>>(
    reader: &mut R,
    count: usize,
    offset: u64,
) -> BinResult<Vec<TOut>> {
    let mut result = Vec::new();
    reader.seek(SeekFrom::Start(offset))?;
    for _ in 0..count as u64 {
        result.push(reader.read_le::<TIn>()?.into());
    }
    Ok(result)
}

fn read_vector_data<R: Read + Seek, T: Into<f32> + BinRead, const N: usize>(
    reader: &mut R,
    count: usize,
    offset: u64,
    stride: u64,
) -> BinResult<Vec<[f32; N]>> {
    let mut result = Vec::new();
    for i in 0..count as u64 {
        // The data type may be smaller than stride to allow interleaving different attributes.
        reader.seek(SeekFrom::Start(offset + i * stride))?;

        let mut element = [0f32; N];
        for e in element.iter_mut() {
            *e = reader.read_le::<T>()?.into();
        }
        result.push(element);
    }
    Ok(result)
}

fn get_u8_clamped(f: f32) -> u8 {
    f.clamp(0.0f32, 1.0f32).mul(255.0f32).round() as u8
}

fn write_f32<W: Write>(writer: &mut W, data: &[f32]) -> std::io::Result<()> {
    for component in data {
        writer.write_all(&component.to_le_bytes())?;
    }
    Ok(())
}

fn write_u8<W: Write>(writer: &mut W, data: &[f32]) -> std::io::Result<()> {
    for component in data {
        writer.write_all(&[get_u8_clamped(*component)])?;
    }
    Ok(())
}

fn write_f16<W: Write>(writer: &mut W, data: &[f32]) -> std::io::Result<()> {
    for component in data {
        writer.write_all(&f16::from_f32(*component).to_le_bytes())?;
    }
    Ok(())
}

fn write_vector_data<
    W: Write + Seek,
    F: Fn(&mut W, &[f32]) -> std::io::Result<()>,
    const N: usize,
>(
    writer: &mut W,
    elements: &[[f32; N]],
    offset: u64,
    stride: u64,
    write_t: F,
) -> Result<(), std::io::Error> {
    for (i, element) in elements.iter().enumerate() {
        writer.seek(SeekFrom::Start(offset + i as u64 * stride))?;
        write_t(writer, element)?;
    }
    Ok(())
}

// TODO: Should this be part of SsbhLib?
fn create_ssbh_array<T, B: BinRead, F: Fn(&T) -> B>(elements: &[T], create_b: F) -> SsbhArray<B> {
    elements.iter().map(create_b).collect::<Vec<B>>().into()
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::io::Cursor;

    fn hex_bytes(hex: &str) -> Vec<u8> {
        // Remove any whitespace used to make the tests more readable.
        let no_whitespace: String = hex.chars().filter(|c| !c.is_whitespace()).collect();
        hex::decode(no_whitespace).unwrap()
    }

    #[test]
    fn read_data_count0() {
        let mut reader = Cursor::new(hex_bytes("01020304"));
        let values = read_data::<_, u8, u16>(&mut reader, 0, 0).unwrap();
        assert_eq!(Vec::<u16>::new(), values);
    }

    #[test]
    fn read_data_count4() {
        let mut reader = Cursor::new(hex_bytes("01020304"));
        let values = read_data::<_, u8, u32>(&mut reader, 4, 0).unwrap();
        assert_eq!(vec![1u32, 2u32, 3u32, 4u32], values);
    }

    #[test]
    fn read_data_offset() {
        let mut reader = Cursor::new(hex_bytes("01020304"));
        let values = read_data::<_, u8, f32>(&mut reader, 2, 1).unwrap();
        assert_eq!(vec![2f32, 3f32], values);
    }

    #[test]
    fn read_vector_data_count0() {
        let mut reader = Cursor::new(hex_bytes("01020304"));
        let values = read_vector_data::<_, u8, 4>(&mut reader, 0, 0, 0).unwrap();
        assert_eq!(Vec::<[f32; 4]>::new(), values);
    }

    #[test]
    fn read_vector_data_count1() {
        let mut reader = Cursor::new(hex_bytes("00010203"));
        let values = read_vector_data::<_, u8, 4>(&mut reader, 1, 0, 0).unwrap();
        assert_eq!(vec![[0.0f32, 1.0f32, 2.0f32, 3.0f32]], values);
    }

    #[test]
    fn read_vector_data_stride_equals_size() {
        let mut reader = Cursor::new(hex_bytes("00010203 04050607"));
        let values = read_vector_data::<_, u8, 2>(&mut reader, 3, 0, 2).unwrap();
        assert_eq!(
            vec![[0.0f32, 1.0f32], [2.0f32, 3.0f32], [4.0f32, 5.0f32]],
            values
        );
    }

    #[test]
    fn read_vector_data_stride_equals_size_offset() {
        let mut reader = Cursor::new(hex_bytes("00010203 04050607"));
        let values = read_vector_data::<_, u8, 2>(&mut reader, 3, 2, 2).unwrap();
        assert_eq!(
            vec![[2.0f32, 3.0f32], [4.0f32, 5.0f32], [6.0f32, 7.0f32],],
            values
        );
    }

    #[test]
    fn read_vector_data_stride_exceeds_size() {
        let mut reader = Cursor::new(hex_bytes("00010203 04050607"));
        let values = read_vector_data::<_, u8, 2>(&mut reader, 2, 0, 4).unwrap();
        assert_eq!(vec![[0.0f32, 1.0f32], [4.0f32, 5.0f32]], values);
    }

    #[test]
    fn read_vector_data_stride_exceeds_size_offset() {
        // offset + (stride * count) points past the buffer,
        // but we only read 2 bytes from the last block of size stride = 4
        let mut reader = Cursor::new(hex_bytes("00010203 04050607"));
        let values = read_vector_data::<_, u8, 2>(&mut reader, 2, 2, 4).unwrap();
        assert_eq!(vec![[2.0f32, 3.0f32], [6.0f32, 7.0f32]], values);
    }

    #[test]
    fn write_vector_data_count0() {
        let mut writer = Cursor::new(Vec::new());
        write_vector_data::<_, _, 1>(&mut writer, &[], 0, 4, write_f32).unwrap();
        assert!(writer.get_ref().is_empty());
    }

    #[test]
    fn write_vector_data_count1() {
        let mut writer = Cursor::new(Vec::new());
        write_vector_data(&mut writer, &[[1f32, 2f32]], 0, 8, write_f32).unwrap();
        assert_eq!(&hex_bytes("0000803F 00000040"), writer.get_ref());
    }

    #[test]
    fn write_vector_stride_offset() {
        let mut writer = Cursor::new(Vec::new());
        write_vector_data(
            &mut writer,
            &[[1f32, 2f32, 3f32], [1f32, 0f32, 0f32]],
            4,
            16,
            write_f32,
        )
        .unwrap();

        // The last 4 bytes of padding from stride should be missing.
        // This matches the behavior of read_vector_data.
        assert_eq!(
            &hex_bytes(
                "00000000 
                 0000803F 00000040 00004040 00000000 
                 0000803F 00000000 00000000"
            ),
            writer.get_ref()
        );
    }

    #[test]
    fn u8_clamped() {
        assert_eq!(0u8, get_u8_clamped(-1.0f32));
        assert_eq!(0u8, get_u8_clamped(0.0f32));
        assert_eq!(128u8, get_u8_clamped(128f32 / 255f32));
        assert_eq!(255u8, get_u8_clamped(1.0f32));
        assert_eq!(255u8, get_u8_clamped(2.0f32));
    }
}