1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
//! SRP client implementation.
//!
//! # Usage
//! First create SRP client struct by passing to it SRP parameters (shared
//! between client and server) and randomly generated `a`:
//!
//! ```ignore
//! use srp::groups::G_2048;
//! use sha2::Sha256;
//!
//! let mut a = [0u8; 64];
//! rng.fill_bytes(&mut a);
//! let client = SrpClient::<Sha256>::new(&a, &G_2048);
//! ```
//!
//! Next send handshake data (username and `a_pub`) to the server and receive
//! `salt` and `b_pub`:
//!
//! ```ignore
//! let a_pub = client.get_a_pub();
//! let (salt, b_pub) = conn.send_handshake(username, a_pub);
//! ```
//!
//! Compute private key using `salt` with any password hashing function.
//! You can use method from SRP-6a, but it's recommended to use specialized
//! password hashing algorithm instead (e.g. PBKDF2, argon2 or scrypt).
//! Next create verifier instance, note that `get_verifier` consumes client and
//! can return error in case of malicious `b_pub`.
//!
//! ```ignore
//! let private_key = srp_private_key::<Sha256>(username, password, salt);
//! let verifier = client.get_verifier(&private_key, &b_pub)?;
//! ```
//!
//! Finally verify the server: first generate user proof,
//! send it to the server and verify server proof in the reply. Note that
//! `verify_server` method will return error in case of incorrect server reply.
//!
//! ```ignore
//! let user_proof = verifier.get_proof();
//! let server_proof = conn.send_proof(user_proof);
//! let key = verifier.verify_server(server_proof)?;
//! ```
//!
//! `key` contains shared secret key between user and the server. Alternatively
//! you can directly extract shared secret key using `get_key()` method and
//! handle authentication through different (secure!) means (e.g. by using
//! authenticated cipher mode).
//!
//! For user registration on the server first generate salt (e.g. 32 bytes long)
//! and get password verifier which depends on private key. Send useranme, salt
//! and password verifier over protected channel to protect against
//! Man-in-the-middle (MITM) attack for registration.
//!
//! ```ignore
//! let pwd_verifier = client.get_password_verifier(&private_key);
//! conn.send_registration_data(username, salt, pwd_verifier);
//! ```
use std::marker::PhantomData;

use digest::Digest;
use generic_array::GenericArray;
use num_bigint::BigUint;

use crate::tools::powm;
use crate::types::{SrpAuthError, SrpGroup};

/// SRP client state before handshake with the server.
pub struct SrpClient<'a, D: Digest> {
    params: &'a SrpGroup,

    a: BigUint,
    a_pub: BigUint,

    d: PhantomData<D>,
}

/// SRP client state after handshake with the server.
pub struct SrpClientVerifier<D: Digest> {
    proof: GenericArray<u8, D::OutputSize>,
    server_proof: GenericArray<u8, D::OutputSize>,
    key: GenericArray<u8, D::OutputSize>,
}

/// Compute user private key as described in the RFC 5054. Consider using proper
/// password hashing algorithm instead.
pub fn srp_private_key<D: Digest>(
    username: &[u8],
    password: &[u8],
    salt: &[u8],
) -> GenericArray<u8, D::OutputSize> {
    let p = {
        let mut d = D::new();
        d.input(username);
        d.input(b":");
        d.input(password);
        d.result()
    };
    let mut d = D::new();
    d.input(salt);
    d.input(&p);
    d.result()
}

impl<'a, D: Digest> SrpClient<'a, D> {
    /// Create new SRP client instance.
    pub fn new(a: &[u8], params: &'a SrpGroup) -> Self {
        let a = BigUint::from_bytes_be(a);
        let a_pub = params.powm(&a);

        Self {
            params,
            a,
            a_pub,
            d: Default::default(),
        }
    }

    /// Get password verfier for user registration on the server
    pub fn get_password_verifier(&self, private_key: &[u8]) -> Vec<u8> {
        let x = BigUint::from_bytes_be(private_key);
        let v = self.params.powm(&x);
        v.to_bytes_be()
    }

    fn calc_key(
        &self,
        b_pub: &BigUint,
        x: &BigUint,
        u: &BigUint,
    ) -> GenericArray<u8, D::OutputSize> {
        let n = &self.params.n;
        let k = self.params.compute_k::<D>();
        let interm = (k * self.params.powm(x)) % n;
        // Because we do operation in modulo N we can get: (kv + g^b) < kv
        let v = if *b_pub > interm {
            (b_pub - &interm) % n
        } else {
            (n + b_pub - &interm) % n
        };
        // S = |B - kg^x| ^ (a + ux)
        let s = powm(&v, &(&self.a + (u * x) % n), n);
        D::digest(&s.to_bytes_be())
    }

    /// Process server reply to the handshake.
    pub fn process_reply(
        self,
        private_key: &[u8],
        b_pub: &[u8],
    ) -> Result<SrpClientVerifier<D>, SrpAuthError> {
        let u = {
            let mut d = D::new();
            d.input(&self.a_pub.to_bytes_be());
            d.input(b_pub);
            BigUint::from_bytes_be(&d.result())
        };

        let b_pub = BigUint::from_bytes_be(b_pub);

        // Safeguard against malicious B
        if &b_pub % &self.params.n == BigUint::default() {
            return Err(SrpAuthError {
                description: "Malicious b_pub value",
            });
        }

        let x = BigUint::from_bytes_be(private_key);
        let key = self.calc_key(&b_pub, &x, &u);
        // M1 = H(A, B, K)
        let proof = {
            let mut d = D::new();
            d.input(&self.a_pub.to_bytes_be());
            d.input(&b_pub.to_bytes_be());
            d.input(&key);
            d.result()
        };

        // M2 = H(A, M1, K)
        let server_proof = {
            let mut d = D::new();
            d.input(&self.a_pub.to_bytes_be());
            d.input(&proof);
            d.input(&key);
            d.result()
        };

        Ok(SrpClientVerifier {
            proof,
            server_proof,
            key,
        })
    }

    /// Get public ephemeral value for handshaking with the server.
    pub fn get_a_pub(&self) -> Vec<u8> {
        self.a_pub.to_bytes_be()
    }
}

impl<D: Digest> SrpClientVerifier<D> {
    /// Get shared secret key without authenticating server, e.g. for using with
    /// authenticated encryption modes. DO NOT USE this method without
    /// some kind of secure authentication
    pub fn get_key(self) -> GenericArray<u8, D::OutputSize> {
        self.key
    }

    /// Verification data for sending to the server.
    pub fn get_proof(&self) -> GenericArray<u8, D::OutputSize> {
        self.proof.clone()
    }

    /// Verify server reply to verification data. It will return shared secret
    /// key in case of success.
    pub fn verify_server(
        self,
        reply: &[u8],
    ) -> Result<GenericArray<u8, D::OutputSize>, SrpAuthError> {
        if self.server_proof.as_slice() != reply {
            Err(SrpAuthError {
                description: "Incorrect server proof",
            })
        } else {
            Ok(self.key)
        }
    }
}